
22 February 2016

Passive Measurement with Libtrace

Shane Alcock

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 2

Outline

• Introduction to Passive Measurement

• Programming Issues in Passive Measurement

• Introducing Libtrace

• Acquiring and Installing Libtrace

• Libtrace Basics: URIs and BPF filters

• Libtrace Tools

• Libtrace API and Examples

• Assignment

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 3

Passive Measurement

• Use existing network traffic to analyse network behaviour
• No artificial “measurement” traffic

• Can be divided into two principal steps

• Capture – reading data off the network

• Analysis – decoding and processing the data

• We're going to focus on measurement at the packet level

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 4

Packet Capture

• Hardware
• Endace DAG cards

• Intel DPDK

• Software

• PCAP (tcpdump)

• Kernel
• Linux native

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 5

Packet Capture

• A header is prepended to each captured packet
• Timestamps

• Packet length

• Header structure differs for each capture format

• Timestamp format can be different too

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 6

Packet Capture

• Example: ERF header used by DAG

• Example: PCAP header

Timestamp

Timestamp (floating point)

Frame Type Flags Record Length

Loss Counter Wire Length

Timestamp

Timestamp (microseconds)

Capture Length Wire Length

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 7

Packet Traces

• Captured packets can be written to disk to create a trace
• Packets are in chronological order

• Capture format header is retained on each packet

• Analysis is repeatable

• Errors in analysis technique can be corrected

• Interesting behaviour can be investigated further

• Collaboration with other researchers
• WITS - http://www.wand.net.nz/wits/

• Datcat - http://www.datcat.org/

• CRAWDAD - http://crawdad.cs.dartmouth.edu/

http://www.wand.net.nz/wits/
http://www.datcat.org/
http://crawdad.cs.dartmouth.edu/

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 8

Capture Techniques

• Full payload capture
• All of the packet payload is retained

• Simple to implement

• Investigating application behaviour is easier

• Disadvantages

• Privacy concerns due to capturing user data

• Trace files are extremely large

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 9

Capture Techniques

• Example – blue area represents the captured data

PCAP

Ethernet

IP

TCP

TCP Payload

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 10

Capture Techniques

• Header capture
• Captured packets are truncated (snapped) to remove user payload

• Fixed length snapping vs header-based snapping

• Traces require less space

• Most pertinent information is in the headers

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 11

Packet Traces

• Example – fixed length (left) vs header snapping (right)

PCAP

Ethernet

IP

TCP

TCP Payload

PCAP

Ethernet

IP

TCP

TCP Payload

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 12

Passive Analysis

• Simple examples
• Counting packets or bytes

• Examining TCP/IP headers

• Advanced ideas

• TCP object extraction

• Traffic classification

• Application-specific analysis, e.g. YouTube performance

• Visualisation

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 13

Passive Analysis

• Real-time
• Capture process reads straight off a network interface

• Performance is critical

• Most practical applications are real-time

• e.g. anomaly detection, IDS, visualisation

• Off-line
• Replace the capture step with reading from a trace file

• Best for resource-intensive analysis

• Many research applications can be done solely off-line

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 14

Analysis Software

• Use existing tools
• Examples: wireshark, tcptrace

• Designed to perform a specific set of tasks

• Develop new analysis tools

• Particularly common in research

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 15

Analysis Software

• Example of an existing tool: wireshark

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 16

Development Issues

• Aim is to count packets using TCP port 80
• Should be easy, right?

• Standard TCP/IP packet captured using PCAP from an
Ethernet link

PCAP

Ethernet

IP

TCP

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 17

Development Issues

• The general case is simple
• Step through the preceding headers to reach the TCP header

• Be careful of the variable length IP header!

• Check the port numbers inside the TCP header

• Increment counter if necessary

• Move onto next packet

• PCAP header will tell us how far we need to skip ahead

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 18

But...

• What about the special cases?
• The packet isn't a TCP packet, e.g. UDP or ICMP

• The packet isn't an IP packet, e.g. ARP

• The packet was truncated before the TCP header

• The packet was truncated part-way through the TCP header

• The packet was fragmented

• TCP header could be in a different fragment

• Note that this is not a comprehensive list!

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 19

Format Changes

• Try our analysis on another trace set
• What if the traces use the ERF format instead of PCAP?

• Update program to support new capture format

ERF

Ethernet

IP

TCP

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 20

Different Link Types

• Applying our analysis to a trace from a wireless link
• Need to add code to detect and skip over 802.11 headers

• Still need to keep our old code for Ethernet as well

RadioTap

802.11

IP

TCP

ERF / PCAP

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 21

Wireless is Hard

• Wireless introduces an entirely new set of problems
• 802.11 header varies in length

• RadioTap header is not always present

• Might be an entirely different header altogether, e.g. Prism

• Might be no header at all before the 802.11 header

• Frame corruption

• Fragmentation can also occur at the 802.11 level

• Once again, not a comprehensive list

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 22

More Link Types

• Other link layer protocols

PPPoE

PPP

IP

TCP

VLAN

Ethernet

ERF / PCAP

MPLS

MPLS

IP

TCP

Ethernet

ERF / PCAP

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 23

Go Live!

• What about running our analysis on a live capture?
• Live capture APIs add an extra level of complexity

• Buffer management

• Code needs to be efficient

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 24

Summary

• Developing a portable analysis tool is very difficult
• Subtle differences between each format header

• Link layer encapsulation is a nightmare

• Live capture formats are particularly difficult to code

• Huge variety of special cases and banana skins

• Wouldn't it be nice if someone...
• did all the tricky programming for us

• wrapped it in a nice API that abstracted away all the nasty details

• gave it all away for free

• was willing to show you how to use it

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 25

Say Hello to Libtrace

• Packet capture and analysis library

• Developed by WAND (University of Waikato)

• Written in C, but there are also Python and Ruby bindings

• Design aimed to resolve all the issues discussed earlier
• Make passive analysis simple and reduce code replication

• Supports reading and writing of trace files

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 26

Libtrace Features

• Capture format agnostic
• The same libtrace program works on any supported capture format

• No difference between live and off-line capture formats

• Developmental advantages

• Analysis programs can be tested off-line before running live

• Input and output formats for the same program can be different

• Libtrace will perform the conversion internally for you

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 27

Libtrace Features

• Protocol details are dealt with internally
• Direct access to each protocol layer

• e.g. trace_get_layer3() jumps straight to the IP header

• Handles a variety of link layer protocols including ...

• Ethernet

• 802.11 wireless

• VLAN

• MPLS

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 28

Libtrace Features

• Consistent and sensible API
• All the details are handled internally within the library

• Programmer just focuses on what they need to complete their task

• Ignore extraneous details

• Typical libtrace programs require 40% fewer LoC than libpcap

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 29

Libtrace Features

• Native support for compressed files
• Many libpcap tools do not deal with compressed files

• Most trace files are large and therefore compressed

• Libtrace doesn't care if a file is compressed or uncompressed

• Both file types use the same code paths

• Both gzip and bzip2 are supported

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 30

Libtrace Performance

• Threaded I/O
• All I/O operations are performed in a separate thread

• Much faster than using a separate gzip process and a pipe

• Avoid memory copies
• Operate on packets where they arrive, rather than copying into

memory allocated by libtrace

• Caching packet details
• Remembering header locations to avoid decoding whole packet

repeatedly

• Also cache packet lengths and other commonly used data

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 31

Getting Libtrace

• Current libtrace version is 3.0.22
• Available from http://research.wand.net.nz/software/libtrace.php

• GitHub: http://github.com/wanduow/libtrace

• Open source

• GPL license

• Operating Systems
• Linux, FreeBSD, MacOS X

• Windows is unsupported, but we have built DLLs in the past

http://research.wand.net.nz/software/libtrace.php
http://github.com/wanduow/libtrace

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 32

Installing Libtrace

• Requirements
• automake-1.9 or later

• libpcap-0.8 or later

• flex and bison

• Strongly recommended

• zlib-dev (for reading and writing compressed traces)

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 33

Installing Libtrace

./configure

make

make install

• Installs to /usr/local/lib by default

• Run make install as root (i.e. using sudo)

• Append –-prefix=DIR option to ./configure to change

• You may also need to need to:
• Add /usr/local/lib to /etc/ld.so.conf

• Run sudo ldconfig

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 34

Libtrace URIs

• URIs describe a libtrace input or output
• <format>:<location>

• Example: a PCAP trace file called example.pcap.gz

• URI is pcapfile:example.pcap.gz

• For input sources, the format can often be left out

• Libtrace will guess the format by examining the file or interface

• Format must always be specified for outputs

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 35

Supported Capture Formats

Format Base URI Example Write
DAG dag dag:/dev/dag0 Yes

ERF erf erf:/trace/example.erf.gz Yes

PCAP interface pcapint pcapint:eth0 Yes

PCAP file pcapfile pcapfile:/trace/example.pcap.gz Yes

Native Linux (Ring) ring ring:eth0 Yes

Native Linux int int:eth0 Yes

Native BSD bpf bpf:eth0 No

TSH tsh tsh:/trace/example.tsh.gz No

RT protocol rt rt:localhost:4500 No

Legacy ATM legacyatm legacyatm:/trace/example.atm.gz No

Legacy Ethernet legacyeth legacyeth:/trace/example.eth.gz No

Legacy PoS legacypos legacypos:/trace/example.pos.gz No

ATM Cell Header atmhdr atmhdr:/trace/example.atmhdr.gz No

FR+ fr+ fr+:/trace/example.fr.gz No

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 36

BPF Filters

• Libtrace supports using BPF expressions to filter traffic
• Commonly used in PCAP (tcpdump)

• Many libtrace tools accept BPF as an argument (usually using -f)

• Tool will then ignore all packets that do not match the filter

• Be careful when the packets are VLAN-tagged!

• Precede filter with “vlan and”, otherwise your filter won't match

• Examples

• “tcp port 80”

• “vlan and (src host 192.168.2.1 or src host 192.168.2.2)”

• man tcpdump for more details

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 37

Libtrace Tools

• Libtrace includes a suite of tools for common tasks
• Splitting, merging traces

• Dumping packets to a terminal in human-readable form

• Simple statistical analyses

• Anyone can use the libtrace tools

• No programming knowledge required

• You do need to know about URIs and BPF filters

• Use them to help validate the results from your programs!

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 38

Tracepktdump

• Prints the contents of each packet to the terminal
• Basically the libtrace equivalent of tcpdump

• The tool I use the most :)

• Decodes headers up to and including the transport layer
• Prints the name and value for each decoded header field

• Subsequent payload is dumped as both hex and ASCII

• Will generate a lot of output!

• Pipe the output through the Unix tool less

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 39

Tracepktdump

• Usage

 tracepktdump [-f filter] [-c count] inputURI

• Options
-f filter Output only packets matching the BPF expression

-c count Stop after displaying count packets

• Example – display all packets on TCP port 80
tracepktdump -f “tcp port 80” pcapfile:example.pcap.gz | less

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 40

Tracesplit

• Divides a trace into subtraces
• Time interval, e.g. every hour or 5 minutes

• Number of packets, e.g. every 10,000 packets

• Size of the output file, e.g. create a series of 1 GB trace files

• Covering a certain time period, e.g. from 3pm to 5pm

• Only packets matching a BPF filter, e.g. “tcp port 80”

• Output trace format does not have to match input format
• tracesplit doubles as a trace format conversion utility!

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 41

Tracesplit

• Usage

 tracesplit [flags] inputURI ... outputURI

• Flags
 -f filter Only output packets that match this BPF filter

 -c count Split every count packets

 -b bytes Split whenever the output trace reaches bytes bytes in size

 -i interval Split every interval seconds of trace time

 -s start Start splitting at this time (UTC seconds)

 -e end End splitting at this time (UTC seconds)

 -m maxfiles Create a maximum of maxfiles files

 -z level Sets a compression level for the output traces

 -Z type Compress output traces using compression format type

 -S length Truncate packets to at most length bytes

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 42

Tracesplit

Create a single trace containing 1000 SMTP packets

tracesplit -z 1 -Z gzip -f “tcp port 25” -c 1000 -m 1
pcapfile:input.pcap.gz pcapfile:1000smtp.pcap.gz

Split a single long PCAP trace into 1 hour ERF traces

tracesplit -i 3600 pcapfile:input.pcap.gz erf:hoursplit

Grab a particular 30 minute segment from a trace

tracesplit -z 1 -Z gzip -s 1228125600 -e 1228127400
pcapfile:today.pcap.gz pcapfile:interesting.pcap.gz

Capture traffic from a live interface into a ERF trace file

tracesplit -z 1 -Z bzip2 int:eth0 erf:capture.erf.bz2

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 43

Libtrace Tools

• tracepktdump – display packets in a human-readable format

• tracesplit – divide a trace into subtraces

• tracemerge – merges traces together

• traceanon – sanitises packets, replacing IP addresses and checksums

• tracestats – performs simple analysis on a given trace

• tracesummary – reports basic statistical summary of a trace

• tracetop – reports busiest network flows in real-time

• tracetopends – reports busiest network endpoints

• tracereport – produces reports describing specific trace properties

• tracertstats – produces real-time packet and byte counts for a trace

• tracereplay – replays a trace to an interface, preserving original timing

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 44

To Be Continued....

• Thursday: discuss the programming API
• I recommend brushing up on your C

• http://www.wand.net.nz/~salcock/301/

• Lectures 1-6 will be most relevant for libtrace programming

http://www.wand.net.nz/~salcock/301/

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 45

Developing Libtrace Programs

• The existing tools are handy but don't do everything
• Need to write our own programs for custom analysis

• Libtrace provides a nice programming API

• You'll need to develop using C or C++

• There is also a Python API, but I won't be covering that today

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 46

Libtrace Documentation

• libtrace.h
• Libtrace header file, documents all structures and functions

• Doxygen

• http://research.wand.net.nz/software/libtrace-docs/html/files.html

• Libtrace Wiki
• http://github.com/wanduow/libtrace/wiki/

http://research.wand.net.nz/software/libtrace-docs/html/files.html
http://github.com/wanduow/libtrace/wiki/

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 47

Examples

• All of the examples I'll mention are available online
• http://www.wand.net.nz/~salcock/tutorial/codedemo

• Most are included with the libtrace source code as well

• Look inside the examples/tutorial directory

http://www.wand.net.nz/~salcock/tutorial/codedemo

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 48

Basic Program Structure

Create Packet

Create Input

Configure Input

Start Input

Process PacketRead Packets

Destroy Input

Destroy Packet

if packet

no more packets

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 49

Libtrace Data Structures

libtrace_packet_t

• Represents a single packet within libtrace

libtrace_t

• Represents a source of packets within libtrace

libtrace_out_t

• Represents an output location within libtrace

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 50

Libtrace Data Structures

• The libtrace data structures are opaque
• Don't use or modify the members of these structures

• Think of them as 'private' members

• Use the libtrace API functions

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 51

Creating Libtrace Packets

libtrace_packet_t *trace_create_packet();

• Creates a structure for reading packets into

• Returns a pointer to an initialised libtrace packet

• Returns NULL in the event of an error

• Libtrace packets can (and should) be re-used

• Most applications only need to create one libtrace packet

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 52

Creating a Libtrace Input

libtrace_t *trace_create(char *uri);

• Opens a trace file or live capture for reading

• Location and format specified using the uri parameter

• Returns a pointer to the libtrace input structure (libtrace_t)

• Returns NULL if an error occurs

• Created trace is not yet available for reading!

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 53

Configuration

int trace_config(libtrace_t *trace, trace_option_t option,
void *value);

• Set a configuration option for a trace

• Configuration changes are applied when the trace is started

• Returns -1 if configuration failed, 0 otherwise

• Some possible options for input traces

• TRACE_OPTION_SNAPLEN

• TRACE_OPTION_PROMISC

• TRACE_OPTION_FILTER

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 54

Starting

int trace_start(libtrace_t *trace);

• Prepares a trace file or live capture for reading

• Applies any configuration options

• trace must have been previously created using trace_create()

• Returns 0 if successful, -1 if an error occurs

• Packets can now be read from the trace

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 55

Error Checking

bool trace_is_err(libtrace_t *trace);

• Returns true if the error state is set for the given trace

• Does not reset the error state

void trace_perror(libtrace_t *trace, const char *msg...);

• Very similar to perror() in standard C

• Prints a (hopefully useful) error message to stderr

• msg is prepended to the error message

• Clears the error status for the trace

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 56

Cleaning Up

void trace_destroy(libtrace_t *trace);

• Closes a trace and frees up any resources it was using

void trace_destroy_packet(libtrace_packet_t *packet);

• Fairly self-explanatory

• Frees all resources associated with the packet

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 57

Reading Packets

int trace_read_packet(libtrace_t *trace, libtrace_packet_t
*packet);

• Reads the next available packet from trace into packet

• trace must have been successfully started

• If packet already contains a packet, it will be replaced

• Returns 0 on EOF, -1 on error, otherwise the number of bytes read

• Remember to handle errors appropriately!

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 58

My First Libtrace Program

• Example – readdemo.c
• A simple program that reads and counts packets

• Demonstrates basic libtrace program structure

• Building our program and linking against libtrace
gcc -g -Wall -o readdemo readdemo.c -ltrace

• If libtrace is installed to a non-default location
gcc -L/home/salcock/install/lib -I/home/salcock/install/include
-o readdemo readdemo.c -ltrace

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 59

Timestamps

uint64_t trace_get_erf_timestamp(libtrace_packet_t *packet);

struct timeval trace_get_timeval(libtrace_packet_t *packet);

double trace_get_seconds(libtrace_packet_t *packet);

• Returns the time that the provided packet was captured

• If capture timestamp is in a different format, it will be converted

• e.g. calling trace_get_timeval on a ERF trace

• Time formats vary in accuracy and resolution

• Timestamps are usually measured in seconds since the epoch

• i.e. Jan 1 1970, 00:00:00 UTC

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 60

Timestamps

• Example - timedemo.c
• Using timestamps to print counts every 10 seconds of trace time

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 61

Packet Length

• Capture length
• The current size of the packet

• Does not include the capture format header

• If the packet has been truncated, this is how much of the packet is
available

• Wire length

• The size of the packet when it was first captured, i.e. before any
truncation

• Does not include the capture format header

• Can include the Frame Check Sequence on Ethernet packets

• DAG captures retain FCS, PCAP does not

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 62

Packet Length

• Payload length
• The amount of post-header payload that was in the packet

• i.e. the payload after the TCP/UDP/ICMP header

• Value is based on the original packet before truncation

• Useful for studying application behaviour, e.g. HTTP, DNS

• Framing length

• The size of the capture format header

• Unlikely that you will ever need to know the framing length

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 63

Packet Length

size_t trace_get_capture_length(libtrace_packet_t *packet);

size_t trace_get_wire_length(libtrace_packet_t *packet);

size_t trace_get_payload_length(libtrace_packet_t *packet);

size_t trace_get_framing_length(libtrace_packet_t *packet);

size_t trace_set_capture_length(libtrace_packet_t *packet,
size_t size);

• Truncates the packet to the suggested length

• If size is larger than the current capture length, the packet is
unchanged

• Returns the new capture length

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 64

Packet Length

• Example - lengthdemo.c
• Instead of just counting packets, let's try counting bytes

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 65

Endpoint Functions

uint16_t trace_get_source_port(libtrace_packet_t *packet);

uint16_t trace_get_destination_port(libtrace_packet_t *packet);

• Returns the requested port number from the transport header

• The port number is returned in HOST byte order

• Returns 0 if no port number is available

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 66

Endpoint Functions

struct sockaddr *trace_get_source_address(libtrace_packet_t
*packet, struct sockaddr *addr);

struct sockaddr *trace_get_destination_address(libtrace_packet_t
*packet, struct sockaddr *addr);

• Returns the requested IP address as a sockaddr

• If addr is NULL, static storage is used to store the result

• Returns NULL, if no IP address is present (i.e. not an IP packet)

• Works for v4 or v6

• Some knowledge of sockaddr conventions in C is required

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 67

Endpoint Functions

char *trace_get_source_address_string(libtrace_packet_t *packet,
char *space, int spacelen);

char *trace_get_destination_address_string(libtrace_packet_t
*packet, char *space, int spacelen);

• Returns the requested IP address as a string

• Works for both IPv4 and IPv6

• space should point to a character buffer for storing the result

• spacelen must be set to the size of the space buffer

• If space is NULL, static storage is used to store the result

• Use it or lose it!

• Set spacelen to 0 if space is NULL

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 68

Endpoint Functions

uint8_t *trace_get_source_mac(libtrace_packet_t *packet);

uint8_t *trace_get_destination_mac(libtrace_packet_t *packet);

• Returns a pointer to the requested MAC address

• Works for both Ethernet and 802.11 frames

• Returns NULL if no MAC address available

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 69

Endpoint Functions

• Example – sourcedemo.c
• Print the source MAC address, IP address and port for each packet

• Demonstrates how to use sockaddrs correctly

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 70

Protocol Decoding

• Protocol decoders fall into three categories
• Layer access – jump to first header at a given OSI layer

• Get payload – skip past a given header

• Shortcut – jump straight to a specific header

• Easy to use, but less flexible

• Don't use these if you want to use a 'get payload' decoder

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 71

Layer Access Functions

• Find the header at a specific OSI layer
• trace_get_packet_buffer

• Returns the very start of the packet (post-capture format header)

• trace_get_packet_meta

• Returns the first meta-data header, e.g. RadioTap

• trace_get_layer2

• Returns the first link layer header, e.g. Ethernet, 802.11

• trace_get_layer3

• Returns the IP layer header, e.g. IPv4, IPv6

• trace_get_transport

• Returns the transport header, e.g. TCP, UDP, ICMP

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 72

Layer Access Functions

void *trace_get_transport(libtrace_packet_t *packet,
 uint8_t *proto, uint32_t *remaining);

• proto and remaining are used as 'output' variables

• proto will tell you which transport protocol is used

• remaining tell you how much captured data is remaining in the
packet, starting from the returned header

• Returns the address of the transport header

• If NULL, no transport header was present in the packet

• Based on the value of proto, you must cast this to the right type

• Can return an incomplete header – check remaining!

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 73

Examining Headers

• Libtrace defines structures for each common header
• Header fields are stored in NETWORK byte order

• Header structures are defined in libtrace.h

• Optional fields are NOT included in the structure definition

• Example: Libtrace UDP header structure

/** Generic UDP header structure */
typedef struct libtrace_udp {
 uint16_t source; /**< Source port */
 uint16_t dest; /**< Destination port */
 uint16_t len; /**< Length */
 uint16_t check; /**< Checksum */
} PACKED libtrace_udp_t;

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 74

Byte Ordering

• Byte ordering bugs are common in libtrace programs
• Network byte order: big-endian

• Host byte order: little-endian (usually, depends on architecture)

• Packet contents are in network byte order
• This is a consequence of the zero-copy approach

• Must convert values to host byte order before using them

• Some API functions do the conversion automatically

• e.g. trace_get_source_port

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 75

Byte Ordering

• Avoiding byte ordering bugs
• Byte ordering is only a problem for fields > 1 byte in size

• So uint8_t is ok, uint16_t and uint32_t are at risk

• If reading directly from a libtrace header structure, byteswap

• If an API function returns a value directly, don't byteswap

• Use ntohs to byteswap 16 bit values, ntohl for 32 bit values

• Above all, double check your results

• If they don't make sense, maybe you've got a bug

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 76

Protocol Decoding

• Example – gettransportdemo.c
• Using trace_get_transport to examine UDP traffic

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 77

Get Payload Functions

• Step past a single header in a packet
• Very useful when there are multiple headers at a single layer

• e.g. decoding VLAN tags

• Only way to access application-layer payload

• Skips over any options appended to the header, e.g. TCP options

• To use these, you must pass in a valid value for 'remaining'

• Only can get this from a layer access function

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 78

Get Payload Functions

void *trace_get_payload_from_ip(libtrace_ip_t *ip,
 uint8_t *proto, uint32_t *remaining);

• Again, proto and remaining are used as output variables

• However, remaining MUST also contain the value resulting from
the function call that returned the IP header

• In this case, that would be trace_get_layer3

• Returns a pointer to the start of the header following the IP header

• Returns NULL if there was no subsequent header

• Does NOT return NULL if the header was truncated

• Again, be careful to check the value of remaining

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 79

Get Payload Functions

• Example – getpayloaddemo.c
• Using get_payload_from_ip to find the UDP header instead

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 80

Shortcut Functions

• Simpler versions of the layer access functions
• Request the header for a specific protocol

• Only a handful of protocols have shortcut functions

• Returns NULL if there is no matching COMPLETE header

• Limitation: no remaining value is returned

• This means you cannot follow up with a get payload function

libtrace_ip_t *trace_get_ip(libtrace_packet_t *packet);

libtrace_ip6_t *trace_get_ip6(libtrace_packet_t *packet);

libtrace_tcp_t *trace_get_tcp(libtrace_packet_t *packet);

libtrace_udp_t *trace_get_udp(libtrace_packet_t *packet);

libtrace_icmp_t *trace_get_icmp(libtrace_packet_t *packet);

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 81

Writing Packets

• The output API is very similar to the input API
• Just add an extra 'output' or 'out' to everything :)

libtrace_out_t *trace_create_output(char *uri);

int trace_config_output(libtrace_out_t *trace,
trace_option_output_t option, void *value);

int trace_start_output(libtrace_out_t *trace);

void trace_destroy_output(libtrace_out_t *trace);

bool trace_is_err_output(libtrace_out_t *trace);

void trace_perror_output(libtrace_out_t *trace, const char
*msg...);

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 82

Writing Packets

int trace_write_packet(libtrace_out_t *trace,
libtrace_packet_t *packet);

• Writes the given packet to the output trace

• Returns -1 if an error occurs, otherwise the number of bytes written

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 83

Basic Program Structure with Writing

Create Packet

Create Input

Configure Input

Start Input

Process PacketRead Packets

Destroy Input

Destroy Packet

if packet

no more packets

Create Output

Configure Output

Start Output

Write Packet

Destroy Output

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 84

Writing Packets

• Example - writedemo.c
• Create a trace containing only TCP port 25 traffic

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 85

Writing Packets

• By default, output traces are not compressed
• This can be changed during the configuration step

• TRACE_OPTION_OUTPUT_COMPRESS sets the compression level

• 1 = least compression, 9 = max compression

• TRACE_OPTION_OUTPUT_COMPRESSTYPE sets a compression method

• “gzip”, “bzip2” are valid methods

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 86

Filtering Packets

libtrace_filter_t *trace_create_filter(char *filterstring);

• Creates a libtrace filter object

• The filter string should be expressed using BPF

• e.g, “tcp port 80”

• Will always return a valid filter – not compiled until first applied

void trace_destroy_filter(libtrace_filter_t *filter);

• Deallocates all resources associated with a libtrace filter

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 87

Filtering Packets

• Applying a filter at the configuration step
• Best way to apply a filter to an entire input

• trace_read_packet will only return packets that match the filter

libtrace_filter_t *filt = trace_create_filter(“tcp port 80”);

if (trace_config(trace, TRACE_OPTION_FILTER, filt) == -1) {
trace_perror(trace, “Failed to apply filter”);
trace_destroy_filter(filt);
return -1;

}

/* TODO Start trace, read some packets, etc. */

trace_destroy_filter(filt);

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 88

Filtering Packets

int trace_apply_filter(libtrace_filter_t *filter,
libtrace_packet_t *packet);

• Applies a libtrace filter to an individual packet

• Returns 0 if the filter does not match, >0 if it does

• Returns -1 if an error occurs

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 89

Filtering Packets

• Examples
• filterdemo.c – a simple version of tracefilter

• Uses trace_apply_filter

• configdemo.c – a better version of tracefilter

• Uses trace_config to apply a filter

• Also uses trace_config_output to compress the output trace

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 90

Additional Reading

• A paper on libtrace
• Beautifully written description of the library and how it works

• Includes performance test results

• http://www.sigcomm.org/ccr/papers/2012/April/2185376.2185382

• Or just Google it :)

http://www.sigcomm.org/ccr/papers/2012/April/2185376.2185382

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 91

The Assignment

• Due 5pm, Friday April 1

• 4 Tasks

• Basic trace analysis

• Identifying port scanning

• Determining the cause of a network event

• Short answer questions

• Libtrace programming in C required

• Better brush up on your C

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 92

Assignment Hints

• Do everything you can to demonstrate understanding
• Use the examples, but don't copy them directly

• Document what is going on in your own words

• This is an INDIVIDUAL assignment
• Discussion with others is OK

• Don't loan your code to your classmates!

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 93

Assignment Hints

• Think like a researcher
• Validate your results using the existing tools

• Think about whether the results you get make sense

• e.g. what ports do you expect to see the most traffic on?

• Code like a programmer

• Check for errors

• Indent sensibly

• Avoid memory leaks

• Document

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 94

Assignment Hints

• Common mistakes
• Byte ordering bugs – check your results!

• Failure to read instructions carefully

• Output formatting and configuration

• Copying too much from the examples

• I will deduct marks for this!

• Copying from your classmates

• Failing to communicate effectively

© THE UNIVERSITY OF WAIKATO • TE WHARE WANANGA O WAIKATO 95

Assignment Help

• Moodle discussion forum
• I'll be monitoring the forum

• Make an appointment to see me

• Email salcock@waikato.ac.nz

• Don't leave it until the last minute!

mailto:salcock@waikato.ac.nz

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

