CDF

Visual Basic Reference Manual

Version 3.8.0, November 10, 2019

Space Physics Data Facility
NASA / Goddard Space Flight Center

Space Physics Data Facility
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This Copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet — gsfc-cdf-support@lists.nasa.gov

Contents

1 Compiling........I.......................I...........I.......................I...........I.......................I......1
1.1 INQIIESPACES ...ttt ettt ettt ettt bt et eat e s bt e st e sb e et e s bt e be s bt e st e e bt eabeeb e em bt eb e et e eut e bt eatesbeemtesbeembesbeenbesbeenbesbeennens 1
1.2 BASE CIASSES ..ueuiiiiieiiiiiie sttt sttt sttt ettt et et e a et b e s he st b b n s n e eneen 1
1.3 Compiling With COMPIIET OPLIONSc.eeiiiiiriiiiiiiieieriteteetet ettt ettt sttt st et st et bt e besbtesbesasenbeeatenbeeneenae 2
14 SQAMPIE PIOZIAMS ...c..eeuiitieitietietieiteteeite ettt sttt e e s bt et e et e e bt e bt et e eu e e bt eatesbeeueesbeentesbeenbesbeenbeebtebeeusenbeeasenbeeneenne 2

2 Programming INTErfaceccccceecccvnrccsssanicsssnnecssssnnessssansessssssessssssessssssssssssssssssssd

2.1 TEEM RETETENCING ... ettt ettt b e bbbt ettt sb e et e sbeebesbeembesbeenbesbeennens 5
2.2 COMPALIDIE TYPES ...eeuviuiiiienierieiieiteetert ettt ettt ettt ettt e bt s bt et e eat e s bt e st e s bt e st e sbeea b e e bt eab e bt ea bt ebe et e sbee bt saeenbeenaenaes 5
2.3 CDFCONSIANLS ..ueeuiiiieiieiieiieiieit ettt sttt ettt ettt et ettt b e st sae st be s et s s et e s e st et euteue e bt sae et e s besaestenesennennennens 6
24 CDF SALUS ..ottt ettt e e e a et e a et et sa et be e a e b ae e enennene 6
2.5 CDF FOTIMALS ..ottt sttt ettt ettt s st be et s et ettt eat e bt e bt su et esbesa et e aesnenennennenn 6
2.0 CDEF Data TYPES...coueeuieuteniieterieeterteete sttt ettt et b et s b et s bt e bt e bt e s bt e st e s bt e st e sbeea b e e bt eabeebeenbeebe et e ebeenbesaeenbeenaenees 6
2.7 DAta ENCOGINGSeoveeuiiiiiiiiiieitieterteetent ettt ettt ettt ettt sttt et e s be e st e s bt e st e sbeea b e e bt e st eebeeateebe et e saee bt saeenbeenaenees 8
2.8 DAta DECOMINES ...eeveeueiiieiieiienteetesieet ettt ettt ettt et e bt e bt e tesate bt e st e s bt e st e sbeeatesbeeabe e bt e st e bt enteebe et e sbee bt saeenbeenaenees 9
2.9 Variable MaJOTTtIES . ..c..eeuerteriertieieriteteettet ettt ettt ettt et st e e s bt et e s bt et e eb b e be et b e bt e st e sbe e bt sbee et sbeenbesbeenbesanenbeas 10
2.10 Record/DIimension VATIANCES...........coueeuerierierieieteteiieteteitetesie sttt sae st se s s e s st eseeseesesaeeseesesaesaessessessennene 11
211 COIMPIESSIONS ...cnviieeneeeutenteeienttete st et e ett et ett et e ett e bt estesbeeseesbeeabesbtenbeebtenbeebtenbeeatebeeste bt entesbeenaesbeenbesmeenbesanenbens 11
212 SPAISEIIESS .euveveeniiriieteetenteete st tet et e et e et e et et e et ebe et e estesbe e st e sbeea bt s bt e bt e bt ea bt eh b e bt eh s e bt e st e bt eat e eheeaesbe e beeba e beeatebeas 12

2021 SPAISE RECOTAS ..ottt ettt ettt et bt et s b et e bt et e e bt et ebtenaeeaeesbeeneenaes 12

2122 SPAISE ATTAYS c.eveuveeuteieeiietteteeiterte et e st et es bt et e s bt et e sbe et e ebtete e bt entesate s bt eabesbeeabeabeembeebten b e e bt et e ebt e bt eaeenaeentenaes 12
2,13 AITDULE SCOPES ..ttt ettt ettt ettt et s be et s bt et e e bt e bt e bt e bt e et e bt e st e s bt eatesbee et sbeenbesmtenbesatenbens 12
2.14 Read-OnLY MOAEScueimiiiiiiiiiiieitteteet ettt sttt st ettt et e bt e bt e bt e b e bt e bt e st e s bt eatesbeeaesbeenbessaenbesanenbens 13
215 ZMOMES .. e et et a et e a et ettt s a e st be b aenene 13
2,16 0.0 t0 0.0 MOGES ...uvviniiiiiriiitieieete sttt st ettt ettt b e s st aesaen e 13
2,17 OperationNal LIScocuereiriiiieieniieteeitet ettt ettt sttt ettt st e b bt e b e bt e bt e st e sbeeatesbeeaesbeebesbaenbesaaenbens 13
2.18 Limits of Names and Other CharaCter StINEScoeevuerierieriinenieierteteetesteete ettt st sae e saae b 14
2.19 Backward File Compatibility With CDF 2.7ccccoiiiiiiiiiiiiiiitetceeeeeeete ettt 14
220 CRECKSUM ...uiuiiiiiiieiieiietettete ettt ettt s st s a et ettt ea e e bt et e bt e bt be s b st e e saesaesnene 15
221 Data ValIdAtiOnccoocieiiiiiiiiiiiiiiie sttt st ettt es et a e bt s a e st aesa e ene 16
222 B-BYLE INEEERI ..ottt ettt ettt sttt sttt e b e bbbt e bt e a e e bt et e be et sbe et ebe e beeatebeas 17
223 LeADP SCCOMMS ...eiuiiiiiiiiiieeteete ettt ettt ettt et sb e et s bt et s bt e b e bt e bt e bt e b e e a e e bt e st e e bt et eb e e teshe et e e bt e beeatebeas 17

3 Understanding the Application Interfaceccccceeveecvcnicccencsccencscnecccsncscnneees 19

3.1
32
33
34
35
3.6

ATZUMENES PASSINE ...ttt ettt s b et bt et s e bt et e sb e et e s b e eabe s bt e tesbeenteene 19
Multi-DImenSIONAl ATTAYSc.eeuterieetirieeiinteertt ettt ettt et ettt sb e et e sbe e bt sbeestesatenbesaaesbeembesbeembenbeensesbeensenne 22
Data Type EQUIVAIBIE......c..eiuiiiiiiiiieteeete ettt ettt bt et st e bt et e sbeeate s bt eabe bt e besbeenteene 22
FIXEA STALEINICNIE.......coueiiiiiiiiiiiieiiierecte ettt sttt ettt e b e b s b sa s b e b e saeaenennens 22
EXCeption HanAIINGccoueiiiiiiiiiiiieieee ettt ettt ettt st sttt et bt et b et be et be et eae 23
Dimensional LIMITAtIONScoeiiiiuiriiiiiniiieieieieteteeeeese ettt ettt ettt s sre st sae s nenens 23

4 Application INLEIrfaceccccevvericssrnrccsssanicssssanecssssnsesssssssessssssssssssssssssssssssssssssssss 29

4.1

411
412
413
414

42

Library INFOTMMAtionccoueiiiriiiiiiieteeee ettt eb et s b et st e bt et esbeeabe s bt et e sbe e teebeenteene 26
CDFZEtDAtATYPESIZE ..c.veeuviiieiieiieieeterieetert ettt sttt ettt ettt esbe s st e s bt st e sbe et e sbeeatesbeenbesbeenteene 26
CDFZetLibraryCOPYIIZILcc.eeuiiiiiiiieieeteteetet ettt ettt sttt s bbb et sbeebesbeeneeene 27
CDFZEtLIDIArYVEISIONeeutitieiiiriieiieiienieeitenieetest ettt ettt e et e bt e bt et s bt esbesatesbeestesbeeabesbeesbesbeensesbeensenne 27
CDFZEESTATUSTEXL ...ttt ettt ettt ettt ettt b ettt et e bt et e e bt enbesatesbeesaesbeesbesbeeatesbeensesbeentenne 28

42.1 CDFCIOSE ...ttt ettt ettt ettt et st s bt et e bt e bt e bt e bt e et e bt e st e ebeeat e sbee et saeenbesatenbesssenbens 29
422 CDFCIOSECDIE ...ttt ettt sttt et b e bt e bbbt e bt e bt e st e bt eat e sbee et sbeenaesbtebesssenbens 30
423 CDFCIALEc.uteneeeiteieete ittt ettt ettt ettt ettt et h et she et s bt et e e bt et e bt e bt e bt e bt e st e ebeentesbee bt sbeenbesatebeessenbens 31
424 CDFCIEAtECDIF ...ttt sttt ettt et b e et b et s bt et e sbeeaesaeenaesaeenbesasebeas 32
425 CDEFAEIRLE ...ttt ettt ettt sttt sttt b et b et b e et a et sa et ettt ne 33
426 CDEFAEIRLECDE ..ottt ettt sttt sttt st et sttt b et a ettt n e e 34
427 CDEFAOC ..ttt ettt st sttt b et st b et bbbt e et sa et et n et ne 35
428 CDFEITOT ..ttt ettt ettt ettt s bt et s bt et s bt et e e bt et e ebe e bt e st e bt e st e ebeemtesbee et sueenbesatenbesnsenbens 36
429 CDFZEECACRESIZEveiuteiiiieiteieett ettt sttt ettt et e b et e bt et e s bt et e sbee et sbeenbesbeenbesseenbens 37
4210 CDFZEtCRECKSUIMteutiiiiiitieiieiteteeitest ettt ettt ettt ettt ettt eat e s bt et e sbe e aesbee bt satenbeeatenbeeasenbeenbesbeentenne 37
4211 CDFZEtCOMPIESSION ...eutentieniiriietieitenteettenteestesteetesbtestesbte bt eatesbeeatesteestesbeeaesbeensesatenbeessenbeemsenbeensesseensenne 38
42.12 CDFgetCompressionCaCRESIZEcc.covuiiiiiiiiiiiiiieiieieseteeetest ettt sttt et b et sbe e sbe et e 39
4213 CDFgetCompressiOnNINTOcocuiiiiiiriiiiniiie ettt ettt st st sttt st e b e aesbeebesbeenteeae 40
4214 CDFZEtCOPYIIZIL ..couteitiiiitieieeiteteet ettt sttt ettt ettt e e st e et sb e bt sbee bt sate s bt esbenbeeasenbeenbeebeentenne 41
4215 CDFZEtDECOMING. ..c.eetieutiriieieeiteteeteet ettt sttt ettt ettt st et sb e aesbee bt sate s bt eabenbeeatesbeeabesbeentenae 42
4216 CDFZEENCOMING ...cc.veittitirtieiiriteieeiteet ettt sttt sttt ettt et e st e st sbe et sbee bt sate s bt eatenbeensesbeenbesbeentenae 42
4217 CDFZEtFIIEBaACKWAIG.cctiiiiiiiiiieieiieteeee ettt sttt sae sttt st e s bt st e b e aaesbeebesbeenteeae 43
4218 CDFZEFOIMAL.......couiitiiiiitieieeiteteet ettt ettt ettt b et s bt et sbee bt sbte bt sate s bt eatenbeemtenbeenbesbeentenae 44
42.19 CDFgetLeapSecondLastUpdatedcooereerierienirienienieieetesicete sttt sttt st site e sate b esesbee e sbeeeeeae 45
4220 CDEFZEMAJOTILYeeuveitieientieieeitentteitest ettt ettt e e st e bt sbte bt eat et e eat e st e estesbee bt sbee bt satenbesstenbeessenbeensesbeentenne 46
4221 CDFZEINAINE. .. .ccuiiieititentteteeit ettt ettt sttt e te s bt e bt sbt e bt eate st e eatesbeestesbee bt saee bt sbte bt satebeemsenbeensesbeentenae 46
4222 CDFgetNegtoOPOSTPOMOMEcc.eertiriiiieienieeite sttt sttt ettt ettt et sbee st bt e bt st e s beeatenbeeaaesbeesbesbeenteeae 47
4223 CDFZetReadONIyMOME.cccueriiiiiiiiiiienitee ettt ettt sttt ettt st st e bt st e beeaaesbeebesbeenteeae 48
4224 CDFZetStagelaCheSizZecooueriiiiiiiiiieieeieee ettt ettt ettt et sttt st e b st e b e e b e sbe et e sbeenteeae 49
4225 CDFZEtVAlIALE. ... coveiteenieriieieeiteieetet ettt sttt ettt et e e sb et sb e e aesate bt satenbeeabenbeeatenbeeasesbeentenae 50
42260 CDFZEEVEISION ..c..eiuiiiiiiniiniietieitetteitest ettt ettt e st st e e sbt et e eat et e eat e st e e st e sbee bt sbee bt satenbeestenbeestenbeensesbeensenae 50
4227 CDFZEIZIMOME ..ottt ettt sttt ettt b et e bt et e s bt et sbe e aesbee bt sate s bt sat e beemtenbeeasesbeentenae 51
4228 CDFINQUITE....ueiutetiiiertteteetteteeit et ettt et sttt s ht e tesbe e besbt e bt eb b et e eat e st e eatesbeenaesbee bt sbte bt eabenbeemtenbeensesbeentenae 52
4229 CDFINQUITECDF ..ottt sttt et et e e sbe et sbe e bt s bt e s bt eabenbeeatesbeeabesbeentenae 53
4230 CDFOPEM ..ttt ettt ettt ettt sttt sttt s bt et sb b e bt e a b e bt eat e s bt ea et eh e et she e bt e bt e bt ea b e b e eabenbe et e ebeenteeae 55
4231 CDEFOPENCDE ..ottt sttt ettt h et s b et sb et sae e bt s bt e bt eabenbe et e sbe et e sbeenteeae 56
4232 CDFSCLECT ...coneiieiiiietteteet ettt sttt sttt sb e bt a e b e at e bt et s bt et s bt e bt s bt e bt eate b e et e s be et ebeenteeae 57
4233 CDFSCIECICDIFcuiiiiiiiiteieeitet ettt sttt ettt b et s bttt s bt e bt sbee bt sate s bt eat e beeatenbeeabesbeentenne 58
4234 CDFSCCACKESIZE ...c..veveeniiiieiieiteteetet ettt ettt ettt et e sbe et sbte bt s bt e s bt eate b e eabenbeeabeebeenteene 59
4235 CDFSEICRECKSUIM.ettiiiiiieieeiieteetet ettt sttt ettt et ettt eat e sb et e sb e tesbee bt satenbeeabenbeemtenbeensesbeentenae 60
42360 CDFSCICOMPIESSION w..veutitientiriietieitenteetesttestesteetesseetesbten bt sutesteeatesteestesbeensesbeenbesatensesssenbeessenbeensesseensenne 60
4237 CDFsetCompressiOnCaChESIZeccuevuiiiiriiiiiieieiiterieeiteteetest ettt sttt sttt sttt sate b eaesbe e b sbe et eae 61
4238 CDFSEDECOINGc.uveuviiniiiieieeiteteeteet ettt sttt ettt et sb et sbe et sbte bt s bt enbeeabenbeesbesbeeabesbeentenae 62
4239 CDFSEENCOING ...couveviiniitieiieitetieitet ettt sttt sttt et b ettt e st sbe et sbee bt sate s bt eatenbeeatesbeeasesbeentenae 63
4240 CDFSetFIleBaCKWardc..cooiiiiiiiiiiiiiieetee ettt sttt sttt st st e e b et e sbeeaesbeenteeae 64
4241 CDFSEEOINALc..eiuieitiiiitieteeitet ettt ettt sttt st a et eat e s bt et sbee et sbee bt satenbeeatenbeessenbeeabesbeentenne 64
4242 CDFsetLeapSecondLastUpdatedcoceeeereiieniiiinienieieetesieete sttt sttt st et ere b e sbe et eae 65
4243 CDFSCUMAJOTILY ..c.veeuteitietentieteeiteteeit ettt st ettt e b st e bt sbt e bt ebte bt eat e st e eatesbee bt sbee bt satenbesatebeessenbeensesbeentenne 66
4244 CDF5setNegtoOPOSTPOMOMEccueriiriiriiiiiniieie ettt ettt st ettt st st st e b esaesbeeaesbeenteeae 67
4245 CDFSetReadONIYMOUEc..eouiriiiiieiiiiieierieete ettt ettt ettt ettt sbee bt st e besatenbeeanesbeeaesbeenteeae 68
4246 CDFSetStaglaChESIZec..eeuveriieiieiietieteeieee sttt ettt ettt et sbe et saee bt s bt e bt eatenbeeaaesbeebesbeenteeae 68
4247 CDFSEEVAAALEcouveiiiiiiieieeiteteetet ettt ettt et sb et bt et sate bt sate s bt esbenbeesaenbeeabesbeenteeae 69
4248 CDFSCIZIMIOEc.veeuieiiiiiiieiieitettet ettt ettt sttt ettt et et b e at e st e st e sbe e aesbee bt sate s bt ebb e beembenbeeabesbeenteene 70
43 VAATIADIES ..ottt ettt st e b bt a bt e a e bttt e h e et eh e e bt ea e e bt e a e e bt e st e b e ea b e bt e teebeenteene 71
43.1 CDFCIOSEIVAALeiiiiiiiieitieieettet ettt ettt ettt sttt s bt et s bt e bt e bt e bt e bt e bt e st e eb e e st e sbeenaesueenbesatenbesasenbens 71
432 CDFCIOSEZVAL ...ttt ettt ettt et bttt e b e bbb e bt e bt e bt e st e eb e et e sbee et sbeenaesbe e besssenbens 72
433 CDFconfirmrVarEXISIEIICEccoueeuteriirieniieienieeteeteete sttt sttt ettt et et et sbee et saeenaesaeenbessnenbens 73
434 CDFconfirmrVarPadValUGEXISIENCEc..eeviruiiiiriiiieiieeiesitetesiteeet ettt st st nbeas 73
435 CDFconfirmzVarEXISTEIICEccueruteiiriieiieitenieeteeteete sttt ettt et ettt et sbe et satenaesaee b saaenbens 74
43.6 CDFconfirmzVarPadValUEEXISIENCEcocuivuiiiiiiiiiiiiieiiteiesitcieeteeetece ettt 75
43.7 CDFCIEALETVAL ...ttt ettt ettt ettt et sttt s bt et e sb et e e bt e bt e bt e bt e st e s bt eatesbee et saeenbesbeenbesanenbens 76

4338

439

43.10
43.11
43.12
43.13
43.14
43.15
43.16
43.17
43.18
43.19
4.3.20
4321
4322
4323
4324
43.25
4.3.26
4327
43.28
43.29
4.3.30
4331
4332
4333
4334
4335
4.3.36
4337
4338
4.3.39
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4.3.50
4351
4352
4.3.53
4.3.54
4.3.55
4.3.56
43.57
4.3.58
4.3.59
4.3.60
43.61
4.3.62
4.3.63

CDECIRALEZV ATc.eeueiieiieiieiiiiiit ettt ettt et bbb ettt et et eae b s b st b b e saennene 78
CDEFARIEIEI VAT ...ttt bbbttt et ea e b b bbb aennenne 79
CDFdEleter VArRECOIASc.eeuiruiriiiiiiiiriiiiiesieietetetet ettt sttt bbb e e 80
CDFdeleterVarRecordsRENUMDETcc.couiriiiiiiiiiiiiiiiicienesteeececere et 81
CDEFARIEIEZVAT ...ttt bbbttt et eae bbb b b saeae e 82
CDFdEleteZVarRECOIAS........c.eouiiuiriiiiiiiiriitiietctcictet ettt et s 83
CDFdeletezVarRecordSRENUMDETcc.couiriiiiiiiiiiiiiiiiciseecccee et 84
CDFZetMax WIHENRECINUINISeoutiuiiriieiieitenteeteeieete sttt ettt ettt et et sb et sbee et sbeenaesaeenbeemnenbens 85
CDEFZENUIMIVALS ..ottt ettt ettt ettt et s bt et e s bt e bt ebte bt e bt e bt estesbeentesbee et sbeenbesbeenbessnenbens 86
CDFZENUMZVALSeiuieiieiieitteteeiteieeite sttt sttt st e e st e bt s bt e besbt e bt e bt e bt e bt e bt estesbeentesbeenaesbeenaesutenbessaenbens 87
CDFZetrVarAlIOCRECOITScveiuiiriieieeiieieeteeee ettt ettt ettt ettt sbe et bt eae s bt enbessnenbens 88
CDFgetrVarBIOCKINGFACLOTc..ootiiiiiiiiiiieeeeee ettt sttt st nae st s nbeas 88
CDFZEtrVarCaCheSizZecooueiuiiiiiieiieieiietee ettt ettt ettt st sbe et sate b st enbesasenbeas 89
CDFZEtrVarCOmPIESSIONeoveeutertteteeitenteetenteetesteestesteestesbtestesbtenteeutesbeestenbeestenbeentesbeeaesbeensesseensesssensens 90
CDFZEIVArDALA ..ottt sttt et b e et b e bt e bt e st e st e et e sbee et sbeenaesbeenbessaenbeas 91
CDFZEtrVarDataTYPec..eeueruieiiriieieeitenieeteste ettt sttt ettt ettt et b et sb et sbeeaesute bt satenbesssenbens 92
CDFZetrVarDIMVAITIanCesccueeuteieriieniietenieetesteete sttt sttt st este st et eat e bt estesbeestesbeeaesaeenbesmeensesssensens 93
CDFZEIVAIINTO ...ttt ettt et et b et b et sbeeaesaeeaesbeenbesatenbeas 94
CDFgetrVarMax AIIOCRECINUIN ...c..cetiiiiiiieieniceteseete sttt sttt ettt et sb e et st ae st enbesaeenbeas 95
CDFgetrVarMax WItteNRECINUINc..eeutiiiriiiiiterieete ettt ettt et s ae st ae st e b sane b 96
CDFZELIVATNAIIIEeouteiiiiiiniieteeitete ettt ettt ettt st e e s bt e be s bt e bt e bt e bt e bt e bt e st e ebeeatesbeenaesueenaesaeenbesanenbens 97
CDFZetr VarNUMELCIENLSc..ceueiuiiiieiieiieteneeteeteete sttt sttt ettt e e st et sbee et satenaesmeenbeessenbens 98
CDFgetrVarNUMRECSWITTIEIccueiiieiiiiieierteeteseete ettt ettt et ae b e b st e b saaenbeas 99
CDFZetrVarPadValUecc.coiiiiiiiiiiieiteee ettt ettt ettt s ae st ae st e b ease b 99
CDFgetrVarReCOrdData........co.eiiiiiiiiiiiiieiteieeieeteee ettt ettt ettt sbe et sbe et sbeeee e 100
CDFZetrVarRECVATIANCEcoueiuiiiiiiiiiiieieeieeiteteee ettt ettt ettt b et sbe et be et sbeeeesae 101
CDFZetrVarReSEIVEPETICENLc...ciuiiiiiiiiitieieetteteet ettt ettt ettt sbe et e e e e 102
CDFZEtrVarsDIMSIZES ...c..eeuviiiiieiieieniteieetee ettt sttt sttt b et e e s b et s b e et s bt et e sbe et e sbeeneesae 103
CDFZEtIVarSEQDALAcueiutiiiiiiiiieteiteteete ettt ettt ettt ettt et s bt et e bt e st e bt et s bt et e sbe et e sbeeneesae 104
CDFZEIVArSEAPOS ...ttt ettt ettt et b et b et b et be et s bt et e sbeenaesae 105
CDFgetrVarsMax WritteNRECINUITocuiiiiriiiiiriiiiiniteie ettt sttt s e 106
CDFZetrVarsINUMDIIMISc..ceiutiiiiiiiiiietenieet ettt sttt sttt st et e et eat e s b e et s bt et e sbe et e sbeeneesae 107
CDFZetrVarSparsRECOIAScoueiuiriiriiiieniieieeieeteeitee ettt ettt et e e st sbe et b e e sae 107
CDFZEEVATINUITL ...eoniiiiiiiiiieiteetet ettt ettt ettt sttt st sb e st b e e st e s b e e st e bt eab e bt eat e e bt eatesbe et e sbeeneesae 108
CDFZetzZVarAlIOCRECOTASc..coviiuiiiiiiiiieiieieeiteee ettt ettt st sbe e e 109
CDFgetzVarBlOCKINGFACTOLcc..oiuiiiiriiiiiiieiieiteee ettt st et s 110
CDFZEtZVarCaCheSiZecouveiuiiiiiiiiiiieieeitet ettt ettt ettt sbe et sbe et b e e e 111
CDFZEtZVarCOmMPIESSIONeveeutetirtentietentteteetteteettentesteestesutestesatesbeestesbesstenbeessenbeeasesbeentesbeensesseensessee 112
CDFZEIZVATDALAcc.eeiuiiieiiiitieteteet ettt ettt sttt et ettt b e et e s bt et e bt eat e s bt et e e bt et esbe et e sbeenaesae 113
CDFZEtZVarDataTyPec.ueeueeiiiieiiiieniteieetteteett ettt ettt st ettt et b e et b et b et e s bt et sbe et e sbeeneesae 114
CDFZEtZVArDIMSIZES ...ttt ettt ettt sttt st et st b et b et b e st e s bt et e s bt et e sbe et e sbeeneesae 115
CDFZetzZVarDIMVATIANCESceoverueriiriiiieniietieiteteettentestte st sitestesitesbeestesbeestesbeease s bt eatesbeentesbeentesbeeneesaee 116
CDFZEtZVATINTO ..ottt ettt ettt et be et s b et sbeeaesae 117
CDFgetzVarMax AIOCRECINUINcouiitiiiiiieiieieeieettete ettt ettt sae e e 118
CDFgetzVarMax WritteNRECINUINL......coutiiiriiiiirieieeiiee ettt sbe et s 119
CDFZEIZVATNAINIEcueeiiiiiiiieiteiteetest ettt ettt sttt st ese e sttt e st e s bt et e bt e st e bt ea b e s bt et e sbe et e sbeeneesaee 120
CDFZetzZVarNUMDIMIScoeiiuiiiiiiiieniieienteeteet ettt sttt et et e e s b et s bt et sbe et e sbeeneesae 120
CDFgetzZVarNUMEIBIENLSccc.ciuiiiiriiiiiniieiieieteeitete ettt ettt ettt sbe et sbee e e 121
CDFgetzZVarNUMRECSWIIHENc..eetiitiiiiniieiieiieieettete sttt sttt ettt et s ea e st sbe et seee e e 122
CDFZetzZVarPadValUeccc.coiiiiiiiiiiiiiiiieeiectetee ettt ettt st sbe et e e 123
CDFgetzZVarRecCordDatac..cocueiuiiiiiiiiiiniieieeeetee ettt ettt st sbe et b e e 124
CDFZEtZVarRECVATIANCEeveeuieiiiiiitiiieeieeieet ettt sttt sttt ettt et b et s bt et sbe et sbeeneesae 125
CDFZetZVarReESEIVEPEICENLcc.eeiuiiiiiiiiintieiieiteieettete sttt ettt sttt b et sbe et sbe et sbeeneesae 126
CDFZEtZVarSeqDatacc.eoiiiiiiiiiieiiiieeee ettt sttt ettt b et b et sbe et sbe et bt enaeeae 127
CDFZEtZVArSEQPOS ...ttt ettt ettt b et b et sbe et b e nae e 128

CDFgetzVarsMaxWIitteNRECINUIc.eeiiiiiiiiiiiieiieee ettt s 128

43.64 CDFgetzVarSParsCRECOIAS.c..couiiiiiiriiiieiteeetee ettt ettt ettt e et see e sbeenesbeas 129

4.3.65 CDFhyperGetrVarDatacc.coeiiiiiiiiinieiieteeetene ettt ettt ettt ea et sate et eatesbeeaesbeenaesbeas 130
4.3.66 CDFhyPerGetZVarDataccc.couiiiiriiiiinieiieiteie ettt ettt sttt et e be et sae e et eatesbeeaesbeenaesbeas 132
4.3.67 CDFhyperPutrVarData.........cc.coiiiiiiiiiniiiieieietese ettt sttt et ettt se et e e e sbeenaesbeas 134
4.3.68 CDFhyperPUtZVarDatac.coiiiiiiiiiiniiiiiieieetee ettt sttt ettt ettt se et e b e aesbe e sbeas 135
4.3.60 CDFINQUITETVAT c.ueiiiiiieiiiiitietenieeteeieet ettt ettt st e sttt e s bt et e s bt et e s be e st e sbeea b e s bt et e eb e e bt ebee bt eatenbeemaesbeensenbeas 137
43770 CDFINQUITEZ VAT c...euiiiiiiieiieeteeteet ettt ettt ettt ettt st be et e s bt et e s b e et e s bt eab e s bt et e eb e e bt eate bt eatenbeemtesbeensenbeas 139
4371 CDFPULIEVAIDAA c..cueeieiiiiieeieieeteee ettt sttt ettt et b et s bt et s bt et eb e e bt eatenbeeatenbeemaesbeenaenbeas 140
4372 CDFPUtrVarPadValUecocueoiiiiiiiiiieiietetetene ettt ettt ettt ettt se e et e bt e e sbeemaesbeas 141
4373 CDFputrVarReCordDatacoeevuiriiiiinieiieieeetenieete ettt ettt ettt et sb et sate b etesbeeaesbeenaesbeas 142
4374 CDFPULIVArSEQDALAccueiiiiiiiiiiieeieeteetete ettt ettt b ettt et e bt et eate et et e sbeesaesbeenaenbeas 143
4375 CDFPULZVAIDALA.coiueiiiiiiiiieeteeiee ettt ettt et b et s bt et s bt et ebe et e eate bt eatenbeesaesbeemnenbeas 144
43776 CDFPUtZVarPadValUe.........ccccoiiiiiiiiiiiiiieiteieetene ettt sttt sttt st se et esbeeaesbeennesbean 146
43777 CDFputzVarRecordDatacc.ceouiriiiiniiiieiteneetenie ettt ettt sttt sbe et sate et eatesbeeaesbeenaesbeas 147
43778 CDFPULZVArSEqDAta....c..coiuiiiiiiiiieiieieeitete ettt ettt ettt b et b ettt et e bt et ebeeseeeatenbeentesbeenaenbeas 148
43779 CDFIENAMEI VAT c...cuiiiiiiiiieiieteeteete ettt ettt ettt ettt et b et e s bt et s bt e st e s bt et e eb e e bt ebte bt eatenbeemaesbeemsenbeas 149
4.3.80 CDFICNAMEZVAT ...cueiiiiiiiiieiieiieiteeieete ettt ettt et st e ettt e st e s bt et e s bt e st e s bt ea b e s bt et e eb e e bt ebee bt eatenbeemaesbeensenbeas 150
43.81 CDFsetrVarAlloCBIOCKRECOTAS.....c..ccuiriiiiiriiiiinienieetesieete sttt ettt et s sbees 150
43.82 CDFSetrVarAlIOCRECOTASccueeiiriiiiiniiiiieitenttetene ettt sttt ettt sa ettt se et esbeeaesbeemnesbeas 151
4.3.83 CDFsetrVarBIOCKINGFACIOLc.coiiiiiiiiriieiieieeetesteetese ettt sttt sttt st sbees 152
4.3.84 CDFSetrVarCaCheSiZec..cocueruiiiiriiiiiniieitieiteste ettt ettt sttt et b et sttt ebe et sate et et esbeesaesbeennenbeas 153
4.3.85 CDFSetrVarCOmPIESSION ...cc.uerueeutirteetinteerteettenteestenteestesteetesteestesteessesseessesseesesseensesseensesntensessessesssensens 154
4386 CDFSetrVarDataSPECcoueeiiriiiiiriieiieiieteeiteste ettt ettt ettt b et st e bttt et sbte et eatenbeemaesbeemnenbeas 155
4.3.87 CDFSetrVarDIMVArIQn escccueeeeriiriieriinieniertenieetenieete st et e st ete st etesbeetesbeentesueeseesstesbeesaesbeensenseas 156
4.3.88 CDFSetrVarInitialRECscc.eetiiuiiiiriieiieiteieetee ettt ettt sttt sb ettt se et e sbeeaesbeemnesbeas 157
4.3.89 CDFSetrVArRECVAITANCE.cc.veiuiiuiiriieiietieiieiteste ettt ettt ettt e b et s bt et s bt et ebe e bt sbeesbeeatenbeesaesbeensenbeas 158
4390 CDFSetrVarReSErVEPEICENLc..cccuiiuiiiiriiiiieiteieeterie ettt ettt ettt sttt st se et e bt e aesaeemnesbeas 158
4391 CDFSetrVarSCaChESIZecoueruiiiiriieiiniieitieiteste ettt ettt ettt sttt ebe et saee et eate s bt emaesbeenaenbeas 159
4.3.92 CDFSErVarSEaPOS ...c..coiiiiiiiiiiiieeieeeete ettt ettt st b et b et s be et e bt et ebt et eatesbe et e sbeeaaenbean 160
4393 CDFSetrVarSparsERECOTASc..cocuiriiriiriiriiriteiietenteetesieete sttt ettt sttt be et saee et st e sbeeaesbeenaesbeas 161
4394 CDFsetzVarAlloOCBIOCKRECOTASccuiriiiiiiriiiiiiienieetenicetes ettt ettt s svees 162
4395 CDFSetZVarAllOCRECOTAScoueiuiiriiiiiniieiieiteeetese ettt sttt ettt ettt sa et esbeeaesbeemaenbeas 163
4396 CDFsetzVarBIOCKINGFACIOTc..couiiiiiiriiiiieiteierteeete ettt ettt sttt s sbees 164
4.3.97 CDFSEtZVArCaChESIZec..eeutiiiiuiiiieiieitete ettt ettt sttt b ettt et ebe et eate et eate s bt eaesbeennenbeas 165
4.3.98 CDFSEtZVarCOmMPIESSION ... couveitiruiirttetirttesteettenteeitesteetenteetesteeatesbeestesbeentesbeenteeseenteeseenteeatenseenaesbeensensens 165
4.3.99 CDFSEtZVarDataSPec ..c...coueeiiiiiiiiiiieiieitete ettt ettt b ettt et e b et sae e st eatesbeeaesbeeaaenbean 166
4.3.100 CDFSetZVarDIMVArIanCescccueeueeuiriteniirienieetenieetenttetesteetesteeteettesteeseeseeentesaeensesbeensesseensesseensenns 167
4.3.101 CDFSetZVarINItialRECscc.ccoueeiiirieiiiniiiiiieeieeteseetert ettt ettt sttt et st saee e ens 168
4.3.102 CDFSEtZVarRECVATTANCEc.eeiiriieiiiiieiiiieie ettt ettt ettt et st st e st s e b sbe et saeenaeens 169
4.3.103 CDFSetZVarReSeIrVEPEICENLcc..coueiiiriiiiiiieieeitesieetert ettt ettt sttt ebe st e e st e b saee i eae 170
4.3.104 CDFSEtZVarsCaCheSIZeccuveieeuiiiiiiinitete ettt ettt et sae et bt ebe s bt e b sbt e besaaenaeens 171
4.3.105 CDFSEIZVAISEAPOS ...ttt ettt et sb e et sbe et s bt e besbe e besaaenaeens 172
4.3.106 CDFsetzVarSparsCRECOIASccuirieiirieiiiiee ettt ettt st st eae st e b st et saee e eas 173
4.3.107 CDEFVAICIOSE ...ttt ettt ettt ettt ettt et b et b et e b et eb e et e e st e sbeemtesbeenaesbeenbesbeenbessaensens 174
4.3.108 CDEFVAICTRALEeveentiiiiieeiieieeiteete ettt ettt ettt et e s bt et e s bt et eb e et e ebt et e eseenbeemtesbeemaesbeenbesbeenbessaenseans 174
4.3.109 CDEFVAIGELeinieiieieeiteteet ettt ettt ettt b et b et e b et e bt et e st e sbeeatesbeembesbeenbesbeenbessaenteans 176
43.110 CDEVATHYPEIGEL ..ottt ettt ettt st st et saeesaesbeebesbt e besaaeaeens 177
43.111 CDEVArHYPEIPUL....cc.eiiiiiiee ettt ettt et et st e e st e e sbt et saae e ens 178
43.112 CDEFVAITIQUITE ..ottt ettt b et e b et e bttt e bt e sbeemtesbeemaesbeenbesbtenbessnenseans 180
43.113 CDEFVAINUITL ...ttt ettt et b et b et e bt et e bt et e ebeesbeeatesbeemaesbeenbesbtenbessaenseans 181
43.114 CDEVAIPUL. ..ottt ettt ettt et sbe et e s bt emae s bt et e sbt e beeaaenteeas 182
43.115 CDEFVArRENAMEcotiiiiiiiiiiiiiteete ettt ettt st bt eae s bt et sbe e bessee e ens 183
44 AUIIDUES/ENLIIES ..eveiutiiiieiieiieieetete ettt ettt ettt be et eat e bt e st e sb e et e sbeebesbeenbesbeenbesbtenbeeseenbenns 184
44.1 CDFAUICTCALE ...eeeenteeieeieeitenteetert ettt ettt ettt ettt et bt et e bt e bt s bt e s b e e st e be e st e bt eabe bt ea b e e bt eatesbeentesbeeneesae 184
442 CDFattrENtrYINQUITE ..c.eeeiiiiiiieieieete ettt ettt ettt et b et be et sbe et sbeeaesae 185

443 (@) D) 3F: 155 { € SO RSP 187

444

445

44.6

447

4438

449

44.10
4411
4412
44.13
44.14
44.15
44.16
4417
44.18
44.19
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449

CDFAIINQUITE «..cevetieiiieieeie ettt ettt ettt et e sttt et sbe et sbeebesbe e beebae b e ea b e bt eatenbeentesbeeneesae 188
CDEFAUIINUIN ...ttt sttt et ae et sae e bt besaesa e b nesaennen 190
CDFAIIPUL ...ttt ettt ettt st sae st b e aesnesnen 190
CDFAttrRENAIME.......c.eiuiiiiiieietetetete ettt sttt ettt s saesa et nesaenaen 192
CDFCONfiIrMALIEXISTEICEc.veuviuieiieiiiiiieicieietnt ettt st s s 193
CDFconfirm@ENtIYEXISTENCEcouvirtiiiiiieiieriieienitet ettt sttt ettt ettt et sbee e 194
CDFconfirmrENtryEXISIENCEcotiriiiiirieiieriteieeite ettt ettt sttt ettt e e e 194
CDFconfirmZENITYEXISIENCE ...c..eoutiriiiiiiieiieiiieteeitet ettt sttt ettt ettt sbee e 195
CDEFCTCAIEALLT ...ttt ettt et st s a e b e et et e st et sae e b e b e saesaebesnesneneen 196
CDEFAEIBTEALLL ...ttt st sttt et et s ae e bt besae st et e nesaennen 197
CDFAEIEtEAIZENLTY ..ottt ettt ettt sttt et e bbb e et be et e b et e sbeeaesae 198
CDFAEIEtE ALLITENLTYeveeiieiteteet ettt st sttt b et e e sbee e sae 199
CDFAEISIEALIZENIIY ..ottt ettt sttt bbbt sbte b e et e bt et esbe et e sbeeeesae 200
CDFGEEATZENLIY ..ottt ettt ettt st s b e be s bt et e e bt e b e et e bt et e bt et e sbeeaesae 201
CDFgetAttrgENtryDataTYPe ...ccveeutiiiiieitieieeieeteretet ettt sttt sttt et sbe et see e e e 202
CDFgetAttrgEntryNUMEISIMENES «...c..eotiitiiiiiiieieriieiceitetceitestc ettt sttt st 203
CDFZEtAUIMAXZENITY ..eoiiiiiiiiiienieeteseet ettt ettt et sttt st s bbb e et be et e b et e sbee e sae 204
CDFZEtAUIIMAXIENIIY ..c..eeiiiiiiiiiiieieeec ettt sttt sttt b et be et sbee e e 205
CDFZEtAUIIMAXZENIIY ...ttt ettt sttt bbbt et e bbb ea e bt eat e bt et e sbeeneesae 206
CDFZEEAIINAINEc..eoutiiieieeiiete ettt ettt ettt ettt et e at e st e st sbe et e sbeebe s bt et e eba e b e eate bt eatenbeeneesbeeneesae 207
CDFGEEAIINUITL. ...ttt sttt ettt ettt et e bt sa e et sbe e st sbe e bt s bt e b e ebte b e ease bt ea e e bt entesbeeneesae 208
CDFZEIAITENIIY ..ottt ettt ettt et b et bbbt et e bt e b e e et e bt eatesbe e e e sbeeeesae 208
CDFget AtITENIYDAtaATYPEcoviriiiiiiieiteetesteetee ettt sttt ettt et sbe et sbee e e 210
CDFgetAttrrEntryNUMEISIMENES......c..coiiitiiieitiiieiieceite ettt sttt sttt 211
CDFGEIALISCOPE <.ttt ettt ettt ettt ettt ettt bttt e st et e st s bt et sbe e bt s bt et e ebte b e eabe bt eate bt entesbeeneesae 212
CDFZEIAIZENIIY ...ttt ettt ettt et s b et sbe et s bt et e ebbe b e e bt e bt eatesbeentesbeeneesae 212
CDFgetAtIZENtryDataTYPE ...cooveeuiiiiiiiitieieitieteste ettt sttt sttt ettt sbe e 214
CDFgetAttrzEntryNUMEICINENTSc..ooiiiiiiiiiiiieniieiceteeetese ettt ettt e 215
CDFZEetNUMALIZENITIESeeouiiiiiiiiiieteieee ettt sttt sttt et sbe et sbee e e 216
CDFZEtNUMALIIDULES ..c..eeutieiiiiieiienteeterteete ettt ettt ettt et et et sbe e bt s bt e besbte b e sa b e beeabesbeeneesbeeneesae 217
CDFZEetNUMALITENIIIES ..coveiiiiiiiiiiieiteiteee ettt sttt ettt sb et sbe e 217
CDFEtNUMALIZENIIICSeeutetiiiteieeteiteeteett ettt ettt ettt ettt et sae et et s bt e b ea et eatesbe et e sbeeneeeae 218
CDFZEtNUMZAIITDULES ...cuvieuieiiiiteteiieiteetesteet ettt ettt ettt ettt e st sbeesbe s bt e besbte b e sase bt eatesbeentesbeeneesae 219
CDFZEtNUMVAIIIDULES ...cuvieutiiiiiienieeieiteetestt ettt ettt ettt ettt st e b bt esae s bt e besbte b e sate bt eatesbeentesbeeneesae 220
CDFINQUITE AT ..coetiteeiiieitete ettt ettt sttt ettt ettt et e bt e bt e st e sbeesbesbeebesbeenbeebae b e ease bt eate bt eneesbeenaesae 221
CDFINQUITEATIZENIIY ..coveiiiiiiiiiiietieeee ettt ettt ettt sae st s bbb ea e bt et e st et e sbeeaesae 223
CDFINQUITE ATITENLTY ..ottt ettt et b et sbee e 224
CDOFINQUITE ATIZENLTY ...ttt ettt st sttt st e bbb e e e bt et e b et e sbeeaesae 225
CDFPULAIZENIIY ..ottt et b et bt bt s bt et e bt e b e e bt e bt ea b e bt et e sbeeeesae 226
CDFPULATITENLTY .ottt ettt sttt s bbbt et b et e b et e sbeeaesae 227
CDFPULATIZENLTY ...ttt ettt et b et s be bt s bt et e e bt e b e bt e bt eatesbe et e sbeeneesae 229
CDEFIENAMEALLL ...ttt ettt ettt st s a bbb s se et et e et sae e b e besae st e besnesaennen 230
CDFSsetAtrgENIIYDataSPEC ... cooveiuiiiiiieiteeiesieet ettt sttt sttt sttt be et sbee e 230
CDFSetAtITENIYDAtASPEC.ceviiitiiiiieiteeteteetee ettt sttt sttt ettt ettt seee e 231
CDFSEEALISCOPE ...euveeutiitentieitenteeitente ettt ettt et sb et bt et e st e st e e st e sbe e st e s bt e bt s bt e bt ebte b e ea b e bt eate bt entesbeeneesae 233
CDFSetAtIZENIYDAtASPECcouviitiiiiienieeieeiteteei ettt st sttt sbt ettt et e st et e sbeeeeeae 233

5 Interpreting CDF Status Codescecevvricrcercssnicscanisssscssasecsnsessassosssessonsesss 235

6 EPOCH Utility ROULINES ...ccceeruerisnecsnncsnecsnncsnecsnncssessnncsseessnessseesssssssassssscssees 230

6.1 COMPUIEEPOCH ...ttt et b et bttt e a et ea e e s bt satesbeentesbeenbenbeas 236
6.2 EPOCHDICAKAOWIvviieiiii ittt ettt ettt ett e et eeeeateeeetaeeetbeeeeaseeesaseeasssseeesseeesssesaanseseensseeensseeans 237
6.3 tOENCOAEEPOCHoiiiiii et ettt e e e et e e e ett e e eeaae e e e aaeeeeataeeesseeeesseeeenseseensseessseaans 237
64 ENCOACEPOCHoooiiiie ettt et e e et e e et e e e etb e e eeaaeeeeaaeeeentaeeesseeesssesaenseseensseeensseaans 237

6.5 (S 11ele 16 (=3 23 50 1) S 5 LSOO 238

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34

ENCOAEEPOCH? ...ttt et et e e e e e e e e esate e e e e eesastaeseeeestaseeeeeetaseseeeensaeeeeas 238

eNCOAEEPOCH ... ettt e e ettt e e e ta e e e tb e e eeaaeeesateeeestaeeesseeenssesaesteseenssesesseaans 238
ENCOACEPOCHY ...ttt e e et e e et e e e tb e e eeaaeeesaaeeeestaeeesseeeassesaenseseenssesesseaans 238
ENCOACEPOCHXoiiiiiieeee ettt et e e e et e e e e bt e e eetbeeeeaaeeesabeeeentseeesseeensseseasseseensseeesseaans 239
LOPAISEEP O CHooiiiiieee ettt et e e et e e et e e eetbeeeeaaeeesabeeeentseeesseseasseseenseseesseeensseaans 239
PATSEEPOCH ..ottt ettt sttt s b et s bt et e e bt et e bt et ea e bt e bt et eatesbe et e sbeebenbeas 240
PATSEEPOCH ...ttt ettt b et b et e b et e e bt et ea e e bt eatenbesatesbe et e sbeenbenbeas 240
PATSEEPOCH? ...ttt ettt st h et b et e e bt et e e bt et ea e e bt e bt et eatenbe et e sbeenbenbean 240
PATSEEPOCHI ...ttt sttt st b et s bt et e bt et e e bt et e a e et e bt e bt sate s bt et e sbeebenhean 240
PATSEEPOCHA ...ttt ettt b et b et e bt et e bt et e a e e bt eat e bt satesbe et e sbeenbenbean 241
COMPUIEEPOCH IO ...ttt b et ettt e at e st e bt e s bt st e sbeemtesbeenbenbeas 241
EPOCH 16DIEAKAOWccuviiiieiiieeciie et ettt ee it e et e et e e e et e e etaeeeetbeeeeaseeesaseeesasseeesseeessesaesseseensseeensseeans 241
tOENCOAEEPOCHLO. ...ttt ettt e e e et e e e ett e e e e aae e e s aaeeeeabaeeeaseeestsaeeanteseensseeeasseeans 242
ENCOACEPOCHIO ... et ettt e e et e e et e e e tbe e e aaeeesateeeeataeeesseeeessaeeenseseensseeesseaans 242
1S 0101 51 23 20 103 5 B K TN LT TSR 242
1S 0101 (51 23 20 103 5 B K T AR RRTRN 243
ENCOUAEEPOCHILO 3 ...ttt ettt et e eeeeeeseseesesassssa s s aaaaaaaaesasseeeeaeesesesessesessssssnsnnes 243
ENCOUAEEPOCHILO 4 ...ttt ettt eeeee e e e e e e e e s e s e ss e s aaaaaaaaasteeeeaeaeesesesessssessnsssnsnnns 243
1S 0101 51 21 20 103 5 B K T ST TR 243
LOPAISEEP O CHIO ...ttt ettt et e e et e e e ta e e eetbeeeeaaeeeeabeeeeataeeesseeessseseesseseensseeensseeans 244
PATSEEPOCHLO ...ttt ettt sttt b et e b et e bt et eatesbeeatenbesatenbeentesbeenaenbeas 244
PATSEEPOCHTLO_1 ...ttt st b et b et b et be et e bt e bt ebtenbesatesbeemtesbeenbenbeas 245
PATSEEPOCHTO_2 ..ottt ettt st ettt b et e e b et be et e bt e bt eatenbesatesbeembesbeenaenbean 245
PATSEEPOCHTLO_3 ...ttt ettt st b et b et e e bttt e bt et eat e bt ebtenbesatesbeenbesbeenbenbeas 245
PATSEEPOCHLO_4 ...ttt sttt et b et bt et e bt et e a e et satenbesatenbeentesbeenaenbeas 245
EPOCHIOUNIXTIIMICvvieeiiie ittt ettt e ettt eta e e eetveeeetteeeeataeeetseeeaasseesaseseensseeessaseassesaasseseessneeasseeans 246
UnIiXTIMEIOEPOCHoooiiiiiiiiee ettt et e e e et e e e ett e e e aae e e e aaaeeeataeeesseeeesseeeesseseesseeeasseaans 246
EPOCH TOtOUNIXTIIME ...cuvviiiiiieeciie ettt ee it ett e eetveeeetteeeetaeeetbeeeeaseeesasesassssseessesensseeaassesesssesensseeans 246
UniXTIMEIOEPOCHILOoiiiiiiiiieeeee ettt e et e e et e e e ett e e e aaeeeeaaaeeeateeeeesseeestseeeenseseesseeeasseeans 247

7 TT2000 Utility ROULINES ..ccecueeesueecsnecsnncsnecsnncsanesancsaessnecssnssssesssessssssssasssccssees 249

7.1
72
7.3
74
7.5
7.6
1.7
7.8
79

COMPULETT2000eoniiiiiieitieteeit ettt ettt s et s b et s bt et e s bt et e e bt e bt ebte bt eatenbesatesbeemtenbeenbenbeas 249
TT2000DIEAKAOWvvieeiiie et ctee ettt et e e et eeetee e e tveeeetteeeetaeeetbeeeaaseeesassaaessseeaassesenssesaansesesnssneensseeans 250
tOENCOAETT2000 ettt ettt e ettt e et e e e etveeeetteeeetaeeeetseeeeasseesaseseensseeesseeeasseeaasseseassesensseeans 251
ENCOACTT2000........eie ittt e et e e et e e ettt e eetteeeetveeeeabeeeetaeeeatseseassseeaasseeansseeanssaeeasseeaanseseassesensseaans 251
LOPATSETT2000eviieieiiieeiiee ettt ettt e et e e ettt e eteeeeetveeeeateeeebaaeetseseasssseaassseenssseanssaeensseeaasseseanssesensseeans 252
PATSETT2000 ..ottt ettt ettt e e s bt et s b et s bt et e eb e et e e bt e bt eat e bt e bt enbesatesbeenbenbeenbenbean 252
CDFgetLastDateinLeapSecondSTabIecccoviiiiiiiiiiiiieiieieeeeest ettt s 252
TT2000t0UNIXTIINEvveeeiiieieiieeeiie e et cet e et e e ettt e et e e eetveeeeateeeetaeeetseeeaasseesaseseensseeesseseassseaasseseesseeensseeans 253
UniXTImMEtOTT2000ooeeiiiiieiieeeiie ettt ettt e ettt e e ettt e e etaeeeetbeeeeaseeesaseeeestaeeeassasenssesaasseseasseeensseeans 253

8 CDF Utility Methods.....ccceeccuecsenssnecsnnssnecsnncssecssancssessssnsssessssesssssssssssssssssscssnes 2599

8.1
8.2
8.3
84
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13

CDEFFIIEEXISES ...ttt sttt ettt sttt s bbbttt et eae bt besae e b e b saesaesnenne 255
CDFZEtChecKSUMVALUEcotiiiiiiieiieieeiteieet ettt sttt st et b ettt et ebt et ea e e s bt st e sbeemtesbeenaenbeas 255
CDFgetCompresSiONTYPEVALUEcc.coouiiiiriiiiiiiiteieeest ettt ettt ettt ettt sbe st s etesbeeaesbees 255
CDFZetDataTYPEVALUEceeeuiiiiiiieiieiieiteteet ettt sttt st et b et ettt s at e bt s bt e s bt st e sbeentesbeenaenbeas 256
CDFZetDECOMINZVAIUE ..ottt sttt sttt et be ettt et eatenbeestesbeenaesbeenaenbeas 256
CDFZEtENCOAINZVALUE ..ottt sttt et ettt ettt et e bt e s bt satesbeentesbeenaenbeas 257
CDFZEtFOIMAtVALUEcouviiiiiiiieiieitet ettt sttt et b et bttt e a e bt eat e s bt et e sbeemtesbeenbenbeas 257
CDFZEtMAJOTItY VAIUE. ..ottt ettt sttt bt et s bttt e be et eate bt satenbesmtesbeentesbeenaenbeas 258
CDFgetSparseRECOIAVALUEc..coiiiiiiiiiiiiieiei ettt ettt ettt st sbe st sbeetesbeeaesbees 258
CDFZetStringCRECKSUMcoiiiiiiiiiiiiiieiieteet ettt ettt bttt ettt ebte st eb e e s bt st e sbeentesbeenaenbees 258
CDFgetStringCompreSSiONTYPEco.viiiriiiiiieieiieeees ettt ettt ettt sttt sbeeaesbees 258
CDFZetStringDataTyPe.cc.eeueriieiieiteiieteteet ettt et b ettt et ebt et ebt e s bt satesbeentesbeenaesbeas 259

CDFZetStriNgDECOMINGcveeuieiiiiieiteieet ettt et b ettt et e at et ebtesbesatesbeentesbeenaenbeas 259

8.14 CDFetStriNGENCOGING ...c.veiutiiiiiiiiiieiteetet ettt ettt sttt sttt b e et b e et s bt et e sbe et e s bt et e saeeneesaee 259

8.15 CDFZetStrINGFOIMAL......coouiiiiiiiiitietetee ettt ettt sttt et b e et b et e bt et e sbeeabesbe et e sbeeneesaee 259
8.16 CDFZEtSIINGIMAJOTILY ...couviruiitiriieieeienteetest ettt ste ettt et s bt et e satesae s bt e s bt st e s bt eabe bt eabe bt eabesbeenbeebeentesbeeneesaee 259
8.17 CDFgetStringSPparsCRECOIcoiuiiiiiiiiiiiieteeeeeeeet ettt sttt ettt sbe ettt e e sbeeneesaee 260
9 CDF EXceptiOn MethOdSI...................................I.......................I...........I..261
9.1 CDFZEUCUITENESTALUS ...cuvettentetieieetteteettet ettt ettesteeatesbeeate s bt eatesbe e besbeeabesbeemteebee bt eueenbeeatenbesntesbeentenbeensenbens 261

0.2 CDFZELSTALUSIMISE ...ttt ettt sttt sh et s bt et e bttt e bt et e e bt et e st e sb e e st e sbe et e sbeesbesbeenbesbeenbeebaenbenseensenns 261

Chapter 1

1 Compiling

VB-CDF distribution is packaged in a self-extracting installer. Once the installer is downloaded and run, all distributed
files, i.e., APIs, test programs, batch files, help information and the document, will be placed into a directory of choice,
and environment variables, PATH and CsharpCDFDir, are automatically set. If an older version already exists in the
host machine, the installer will try to remove it before the new one is installed.

To VB, CDF library is unmanaged code distributed in the native DLL. The distributed .DLLs were built from a 32-bit
(x86) Windows and they can be run on a 32-bit Windows via the x86-compatible Common Language Runtime (CLR),
as well as a 64-bit Windows under WOW64.

1.1 Namespaces

Several classes are created for VB applications that facilitate the calls to the native CDF DLL. The CDF namespace
has been set up to include these CDF related classes: CDFConstants, CDFException, CDFAPIs. and CDFUtils.
CDFConstants provides commonly used constants that mimic to those defined in the .DLL CDFException provides the
exception handling when a failed CDF operation is detected. CDFAPIs provide all (static) public (and private) methods
that VB applications can call to interact with the similar, underlining functions provided by the CDF Standard Interface
in the .DLL. CDFUltils provides several small utility tools. These classes are distributed in the form of signed
assemblies , as .DLLs. To facilitate the access to functions in DLL, each VB application must use the “cdf”
namespace in order to call the VB-CDF APIs. The following namespaces should be included by VB applications that
call CDF APIs:

imports System
imports System.Runtime.InteropServices
imports CDF

1.2 Base Classes

CDFAPISs is the main class that provides the VB-CDF APIs. Class CDFAPIs inherits from CDFConstants class, which
defines all constants referenced by the CDF. A VB application, if inheriting from the CDFAPIs class, can call all
CDFAPIs methods and refer CDFConstants’ constants directly, without specifying their class names. CDFException
class inherits from VB’s Exception class and CDFUtils class inherits from CDFConstants class as well, .

1.3 Compiling with Compiler Options

If a test application, e.g., TestCDF.vb, resides in the same directory as all distributed .dll files, the following command
can be used to create an executable

vbc /platform:x86 /r:CDFAPIs.dll,CDFException.dll,
CDFConstants.dll,CDFUtils.dll TestCDF.vb

vbc.exe, the VB compiler, can be called automatically from an IDE such as Visual Studio
.NET, or run from the command line if the PATH environment variable is set properly.
vbc.exe can be found in the Windows’s .NET Framework directory,
<windows>\Microsoft .NET\Framework\v#.# (v#.# as v3.5 or in the latest release version).

/platform:x86 option is required for the Windows running 64-bit OS as VB-CDF is built on an x86 (32-bit) platform.

When the VB-CDF package is installed, the PATH environment variable is automatically modified to include the
installation directory so the native CDF .DLL, dlledfesharp.dll , becomes available when a VB application calls CDF
functions. Once the executable, TestCDF.exe, is created, it can be run from any directory.

If the VB applications that call CDF APIs reside in the directories other than the VB-
CDF installation directory, the following compilation command can be used to create an
executable (.exe):

vbc /platform:x86
/1ib:%CsharpCDFDir%
/r:cdfapis.dll, cdfconstants.dll, cdfexception.dll,cdfutils.dll
TestCDF.vb

where environment variable CsharpCDFDir, the installation directory for VB-CDF package, .is set when the installer is
run.

When the executable is run, an exception of “FileNotFoundException” will be encountered
as CDFAPIs could not be loaded. 1It’s Dbecause the distributed CDF assemblies are
considered private in the .NET environment. The .NET Framework’s runtime, Common
Language Runtime (CLR), will not be able to locate the files if the application resides
in a different directory from the called assemblies. To make these assemblies global so
CLR can locate, they need to be placed in the Global Assembly Cache (GAC) repository. Use the

following steps to do so:

gacutil /i CDFConstants.dll
gacutil /i CDFException.dll
gacutil /i CDFAPIs.dll
gacutil /i CDFUtils.dll

gacutil.exe (Global Assembly Cache utility) is a Microsoft Software Development Kits (SDKs) utility that can
insert, list and remove the assemblies to and from GAC. Gacutil.exe usually can be found at <Program
Files>\Microsoft SDKs\Windows\v#.#\bin (v#.# as v6.0A or in the latest release version). Use “gacutil /u” to remove
assemblies of older versions form GAC.

ildasm.exe is another SDKs utility that can be used to browse the assemblies for information as versions, keys, etc..

1.4 Sample programs

A couple of sample programs are included for distribution. Qst2vb.vb and Qst2vb2.vb, the quick test programs for
VB. Qst2vb.vb uses the VB value type for data read and write to a CDF file. Qst2vb2.vb passes in the base class
objects for arguments while reading the data from a CDF. Qts2cEpoch.vb , Qst2cEpoch16.vb and Qst2¢TT2000.vb
are three sample programs that show how EPOCH-related functions are used. A batch file, tocompileVB.bat, is
distributed along with the sample programs. Execute it from a Command Prompt window to compile the programs into
executables (.exe). Run totestvb.bat to test the executables to make sure they all work fine.

Chapter 2

2 Programming Interface

2.1 Item Referencing

The following sections describe various aspects of the programming interface for VB applications.

For VB applications, all item numbers are referenced starting at zero (0). These include variable, attribute, and
attribute entry numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables
are numbered starting at zero (0).

2.2 Compatible Types

As VB and CDF .DLL may have different sizes of the same data types, e.g. long, the size compatibility must be
enforced when passing the data between the two. On 32-bit Windows, 4-byte long has been used all over in the CDF
.DLL. However, long in VB is defined as 8-byte. So, to make the size compatible, 4-byte integer is used, instead, in
VB for each long type variable in the .DLL. For CDF data of type CDF_CHAR, or CDF_UCHAR, it is represented by
a string in VB. They are not size compatible, so conversion, performed in the APIs, is needed between a character array
in .DLL and string in VB.

The VB-CDF operations normally involve two variables: the operation status, status, and the CDF identifier, id:

status All VB-CDF functions, except CDFvarNum, CDFgetVarNum, CDFattrNum and
CDFgetAttrNum, return an operation status. This status is defined as an integer in
.DLL and VB. The CDFerror method can be used to inquire the meaning of any
status code. Appendix A lists the possible status codes along with their
explanations. Chapter 5 describes how to interpret status codes.

id An identifier (or handle) for a CDF that must be used when referring to a CDF.
This identifier has a type of long in VB. A new identifier is established whenever a
CDF is created or opened, establishing a connection to that CDF on disk. This long
value is used in all subsequent operations on a particular CDF. The value must not
be altered by an application.

2.3 CDFConstants

CDF defines a set of constants that are used all over the .DLL. These constants are mimicked in CDFConstants class
with compatible data types.

2.4 CDF status

These constants are of same type as the operation status, mentioned in 2.2.
CDF_OK A status code indicating the normal completion of a CDF function.
CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Status less than CDF_OK normally indicate an error. For most cases, an exception will be thrown.

2.5 CDF Formats

SINGLE FILE The CDF consists of only one file. This is the default file format.

MULTI_FILE The CDF consists of one header file for control and attribute data and one
additional file for each variable in the CDF.

2.6 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF BYTE 1-byte, signed integer.
CDF_CHAR 1-byte, signed character.
CDF _INT1 1-byte, signed integer.
CDF _UCHAR 1-byte, unsigned character.
CDF_UINT1 1-byte, unsigned integer.
CDF_INT2 2-byte, signed integer.
CDF_UINT2 2-byte, unsigned integer.
CDF_INT4 4-byte, signed integer.

CDF_UINT4 4-byte, unsigned integer.

CDF _INT8 8-byte, signed integer.
CDF _REALA4 4-byte, floating point.
CDF_FLOAT 4-byte, floating point.
CDF_REALS 8-byte, floating point.
CDF_DOUBLE 8-byte, floating point.
CDF_EPOCH 8-byte, floating point.

CDF_EPOCH16 two 8-byte, floating point.

CDF_TIME_TT2000 8-byte, signed integer.

The following table depicts the equivalent data type between the CDF and VB:

CDF Data Type VB Data Type
CDF_BYTE sbyte
CDF_INT1 sbyte
CDF_UINTI1 byte
CDF_INT2 short
CDF_UINT?2 ushort
CDF_INT4 integer
CDF_UINT4 uinteger
CDF_INTS8 long
CDF_REAL4 single
CDF_FLOAT single
CDF_REALS double
CDF_DOUBLE double
CDF_EPOCH double
CDF_EPOCH16 double(2)!
CDF_TIME_TT20001 long
CDF_CHAR string
CDF_UCHAR string

CDF_CHAR and CDF_UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (representing the length of the string, where each element is
a character).

NOTE: Keep in mind that an long is 8 bytes and that an integer is 4 bytes. Use integer for CDF data types CDF_INT4
and CDF_UINTH4, rather than long. Use long for CDF_INT8 and CDF_TIME TT2000 data types.

' CDF_EPOCHI16 has two doubles, which corresponds to an array as double() in VB.

2.7 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST ENCODING

NETWORK ENCODING

VAX ENCODING

ALPHAVMSd ENCODING

ALPHAVMSg_ENCODING

ALPHAVMSi ENCODING

ALPHAOSF1_ENCODING
SUN_ENCODING
SGi_ENCODING

DECSTATION _ENCODING

IBMRS_ENCODING
HP_ENCODING
IBMPC_ENCODING
NeXT_ENCODING
MAC_ENCODING
ARM_LITTLE_ENCODING
ARM_BIG_ENCODING

IA64VMSi ENCODING

Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

Indicates network transportable data representation (XDR).

Indicates VAX data representation. Double-precision floating-point
values are encoded in Digital's D FLOAT representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D _FLOAT
representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G_FLOAT

representation.

Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

Indicates DEC Alpha running OSF/1 data representation.
Indicates SUN data representation.

Indicates Silicon Graphics Iris and Power Series data representation.

Indicates DECstation data representation.

Indicates IBMRS data representation (IBM RS6000 series).
Indicates HP data representation (HP 9000 series).

Indicates PC data representation.

Indicates NeXT data representation.

Indicates Macintosh data representation.

Indicates ARM architecture running little-endian data representation.
Indicates ARM architecture running big-endian data representation.

Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

[A64VMSd_ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s D_FLOAT

representation.

[A64VMSg ENCODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s G_FLOAT
representation.

When creating a CDF (via CDFcreate) or respecifying a CDF's encoding (via CDFsetEncoding), you may specify any
of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect as specifying
HOST ENCODING.

When inquiring the encoding of a CDF, either NETWORK ENCODING or a specific machine encoding will be
returned. (HOST _ENCODING is never returned.)

2.8 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK DECODING Indicates network transportable data representation (XDR).

VAX DECODING Indicates VAX data representation. Double-precision floating-point
values will be in Digital's D_ FLOAT representation.

ALPHAVMSd DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's D _FLOAT
representation.

ALPHAVMSg DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G _FLOAT
representation.

ALPHAVMSi_DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in IEEE representation.

ALPHAOSF1_DECODING Indicates DEC Alpha running OSF/1 data representation.

SUN_DECODING Indicates SUN data representation.

SGi_DECODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_DECODING Indicates DECstation data representation.

IBMRS DECODING Indicates IBMRS data representation (IBM RS6000 series).

HP_DECODING Indicates HP data representation (HP 9000 series).

IBMPC_DECODING Indicates PC data representation.

NeXT DECODING Indicates NeXT data representation.

MAC_DECODING Indicates Macintosh data representation.

ARM_LITTLE DECODING Indicates ARM architecture running little-endian data representation.

ARM_BIG _DECODING Indicates ARM architecture running big-endian data representation.

IA64VMSi_DECODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in IEEE representation.

[A64VMSd_DECODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s D_FLOAT
representation.

[A64VMSg DECODING Indicates Itanium 64 running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital’s G_FLOAT
representation.

The default decoding is HOST DECODING. The other decodings may be selected via the CDFsetDecoding method.
The Concepts chapter in the CDF User's Guide describes those situations in which a decoding other than
HOST DECODING may be desired.

2.9 Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariables and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default.

COLUMN_MAJOR Fortran-like array ordering for variable storage. The first dimension in
each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

As with hyper reads and writes, the majority of a CDF's variables affect multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the

10

CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For C applications the compiler-defined majority for arrays is row major. The first dimension of multi-dimensional
arrays varies the slowest in memory.

2.10 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.

VARY True record or dimension variance.

NOVARY False record or dimension variance.
If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record
variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the
same values.)
If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If

the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

2.11 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set. Among the available types, GZIP provides the best result.

NO_COMPRESSION No compression.

RLE_COMPRESSION Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length

encoding of zeros is supported. This parameter must be set to
RLE OF ZEROs.
HUFF_COMPRESSION Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL ENCODING TREES.

AHUFF_COMPRESSION Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined

11

for each block of bytes being compressed. This parameter must be set
to OPTIMAL ENCODING TREES.

GZIP_COMPRESSION Gnu's “zip" compression.? There is one parameter.
1. The level of compression. This may range from 1 to 9. 1 provides the
least compression and requires less execution time. 9 provide the most
compression but require the most execution time. Values in-between

provide varying compromises of these two extremes. 6 normally
provides a better balance between compression and execution.

2.12 Sparseness

2.12.1 Sparse Records

The following types of sparse records for variables are supported.
NO_SPARSERECORDS No sparse records.

PAD_SPARSERECORDS Sparse records - the variable's pad value is used when reading values from
a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when

reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

2.12.2 Sparse Arrays

The following types of sparse arrays for variables are supported.’

NO_SPARSEARRAYS No sparse arrays.

Note: sparse array is not supported and will not be implemented.

2.13 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the
CDF toolkit).

GLOBAL SCOPE Indicates that an attribute's scope is global (applies to the CDF as a
whole).

2 Disabled for PC running 16-bit DOS/Windows 3.x.
3 Obviously, sparse arrays are not yet supported.

12

VARIABLE SCOPE Indicates that an attribute's scope is by variable. (Each rEntry or zEntry
corresponds to an rVariable or zVariable, respectively.)

2.14 Read-Only Modes

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via CDFsetReadOnlyMode method. When read-only
mode is set, all metadata is read into memory for future reference. This improves overall metadata access performance
but is extra overhead if metadata is not needed. Note that if the CDF is modified while not in read-only mode,
subsequently setting read-only mode in the same session will not prevent future modifications to the CDF.

READONLYon Turns on read-only mode.

READONLYoff Turns off read-only mode.

2.15 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected via CDFsetzMode method.

zMODEoff Turns off zMode.
zMODEon1 Turns on zMode/1.
zMODEon2 Turns on zMode/2.

2.16 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via CDFsetNegtoPosfpOMode method.

NEGtoPOSfpOon Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOSfpOoff Do not convert -0.0 to 0.0 when read from or written to a CDF.

2.17 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.

CDF_MAX DIMS Maximum number of dimensions for the rVariables or a zVariable.

13

CDF_MAX PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. on
the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

2.18 Limits of Names and Other Character Strings

CDF_PATHNAME LEN Maximum length of a CDF file name. A CDF file name may contain disk
and directory specifications that conform to the conventions of the
operating systems being used (including logical names on OpenVMS
systems and environment variables on UNIX systems).

CDF_VAR NAME LEN256 Maximum length of a variable name.

CDF_ATTR NAME LEN256 Maximum length of an attribute name.
CDF_COPYRIGHT LEN Maximum length of the CDF Copyright text.
CDF_STATUSTEXT_LEN Maximum length of the explanation text for a status code.

2.19 Backward File Compatibility with CDF 2.7

By default, a CDF file created by CDF V3.0 or a later release is not readable by any of the CDF releases before CDF
V3.0 (e.g. CDF 2.7.x, 2.6.x, 2.5.x, etc.). The file incompatibility is due to the 64-bit file offset used in CDF 3.0 and
later releases (to allow for files greater than 2G bytes). Note that before CDF 3.0, 32-bit file offset was used.

There are two ways to create a file that’s backward compatible with CDF 2.7 and 2.6, but not 2.5. A method,
CDFsetFileBackward, can be called to control the backward compatibility from an application before a CDF file is
created (i.e. CDFcreateCDF). This method takes an argument to control the backward file compatibility. Passing a
flag value of BACKWARDFILEon, defined in CDFConstants, to the method will cause new files being created to
be backward compatible. The created files are of version V2.7.2, not V3.*. This option is useful for those who wish to
create and share files with colleagues who still use a CDF V2.7/V2.6 library. If this option is specified, the maximum
file size is limited to 2G bytes. Passing a flag value of BACKWARDFILEoff will use the default file creation mode
and newly created files will not be backward compatible with older libraries. The created files are of version 3.* and
thus their file sizes can be greater than 2G bytes. Not calling this method has the same effect of calling the method
with an argument value of BACKWARDFILEoff.

The following example creates two CDF files: “MY_TEST1.cdf” is a V3.* file while “MY_TEST2.cdf” a V2.7 file.

dim id1 as long, id2 as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFcreateCDF(“MY_TEST1”, id1)

14

CDFsetFileBackward(BACKWARDFILEon)
status = CDFCreateCDF(“MY_TEST2”, id2)

catch ex as Exception

end try

Another method is through an environment variable and no method call is needed (and thus no code change involved in
any existing applications). The environment variable, CDF_FILEBACKWARD on Windows, is used to control the
CDF file backward compatibility. Ifits value is set to “TRUE”, all new CDF files are backward compatible with CDF
V2.7 and 2.6. This applies to any applications or CDF tools dealing with creation of new CDFs. If this environment
variable is not set, or its value is set to anything other than “TRUE”, any files created will be of the CDF 3.* version
and these files are not backward compatible with the CDF 2.7.2 or earlier versions .

Normally, only one method should be used to control the backward file compatibility. If both methods are used, the
method call through CDFsetFileBackward will take the precedence over the environment variable.

You can use the CDFgetFileBackward method to check the current value of the backward-file-compatibility flag. It
returns 1 if the flag is set (i.e. create files compatible with V2.7 and 2.6) or 0 otherwise.

dim flag as integer ¢ Returned status code.

flag = CDFgetFileBackward()

2.20 Checksum

To ensure the data integrity while transferring CDF files from/to different platforms at different locations, the
checksum feature was added in CDF V3.2 as an option for the single-file format CDF files (not for the multi-file
format). By default, the checksum feature is not turned on for new files. Once the checksum bit is turned on for a
particular file, the data integrity check of the file is performed every time it is open and a new checksum is computed
and stored when it is closed. This overhead (performance hit) may be noticeable for large files. Therefore, it is
strongly encouraged to turn off the checksum bit once the file integrity is confirmed or verified.

If the checksum bit is turned on, a 16-byte signature message (a.k.a. message digest) is computed from the entire file
and appended to the end of the file when the file is closed (after any create/write/update activities). Every time such
file is open, other than the normal steps for opening a CDF file, this signature, serving as the authentic checksum, is
used for file integrity check by comparing it to the re-computed checksum from the current file. If the checksums
match, the file’s data integrity is verified. Otherwise, an error message is issued. Currently, the valid checksum modes
are: NO_CHECKSUM and MD5_CHECKSUM, both defined in CDFConstants class. With MD5 CHECKSUM, the
MDS5 algorithm is used for the checksum computation. The checksum operation can be applied to CDF files that were
created with V2.7 or later.

There are several ways to add or remove the checksum bit. One way is to use the method call with a proper checksum
mode. Another way is through the environment variable. Finally, CDFedit and CDFconvert (CDF tools included as
part of the standard CDF distribution package) can be used for adding or removing the checksum bit. Through the
Interface call, you can set the checksum mode for both new or existing CDF files while the environment variable
method only allows to set the checksum mode for new files.

15

The environment variable CDF_CHECKSUM on Windows is used to control the checksum option. If its value is set
to “MDS5”, all new CDF files will have their checksum bit set with a signature message produced by the MD5
algorithm. If the environment variable is not set or its value is set to anything else, no checksum is set for the new files.

The following example set a new CDF file with the MD5 checksum and set another existing file’s checksum to none.

Dim id1 as long, id2 as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim checksum as integer ¢ Checksum code.

status = CDFCreateCDF(“MY_TEST1”, id1)

'status = CDFsetChecksum (id1, MD5_CHECKSUM)
'status = CDFclose(id1)

'status = CDFopen(“MY_TEST2”, id2)

status = CDFsetChecksum (id2, NO_CHECKSUM)

status = CDFclose(id2)

2.21 Data Validation

To ensure the data integrity of CDF files and secure operation of CDF-based applications, a data validation feature has
been added to the CDF opening logic. This process, as the default, performs sanity checks on the data fields in the
CDF's internal data structures to make sure that the values are within valid ranges and consistent with the defined
values/types/entries. It also ensures that the variable and attribute associations within the file are valid. Any
compromised CDF files, if not validated properly, could cause applications to function unexpectedly, e.g.,
segmentation fault due to a buffer overflow. The main purpose of this feature is to safeguard the CDF operations, catch
any bad data in the file and end the application gracefully if any bad data is identified. Using this feature, in most
cases, will slow down the file opening process especially for large or very fragmented files. Therefore, it is
recommended that this feature be turned off once a file’s integrity is confirmed or verified. Or, the file in question may
need a file conversion, which will consolidate the internal data structures and eliminate the fragmentations. Check the
cdfconvert tool program in the CDF User’s Guide for further information.

This validation feature is controlled by setting/unsetting the environment variable CDF_VALIDATE on Windows is
not set or set to “yes”, all CDF files are subjected to the data validation process. If the environment variable is set to
“no”, then no validation is performed. The environment variable can be set at logon or through the command line,
which goes into effect during a terminal session, or within an application, which is good only while the application is
running. Setting the environment variable, using C method CDFsetValidate, at application level will overwrite the
setup from the command line. The validation is set to be on when VALIDATEFILEon is passed in as an argument.
VALIDATEFILEoff will turn off the validation. The function, CDFgetValidate,will return the validation mode, 1
(one) means data being validated, 0 (zero) otherwise. If the environment variable is not set, the default is to validate the

4 The data validation during the open process will not check the variable data. It is still possible that data could be
corrupted, especially compression is involved. To fully validate a CDF file, use cdfdump tool with “-detect” switch.

16

CDF file upon opening.

The following example sets the data validation on when the CDF file, “TEST”, is open.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

CDFsetValidate (VALIDATEFILEon)
status = CDFopen(“TEST”, id)

The following example turns off the data validation when the CDF file, “TEST” is open.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

CDFsetValidate (VALIDATEFILEoff)
status = CDFopen(“TEST”, id)

2.22 8-Byte Integer

Both data types of CDF_INTS8 and CDF_TIME_TT2000 use 8-byes signed integer. VB’s “long” type is the one that
matches to these two types.

2.23 Leap Seconds

CDF’s CDF_TIME_TT2000 is the epoch value in nanoseconds since J2000 (2000-01-01T12:00:00.000000000) with
leap seconds included. The CDF uses an external or internal table for computing the leap seconds. The external table, if
present and properly pointed to by a predefined environment variable, will be used over the internal one. When the VB
package is installed, the external table and environment variables are set so it can be used. If the external table is
deleted or no longer pointed by the environment variable, the internal, hard-coded table in the library is used. When a
new leap second is added, if the external table is updated accordingly, then the software does not need to be upgraded.
Refer to CDF User’s Guide for leap seconds.

A tool program, CDFleapsecondsInfo distributed with the CDFpackage, will show how the table is referred and when
the last leap second was added. Optionally, it can dump the table contents.

17

18

Chapter 3

3 Understanding the Application
Interface

This chapter provides some basic information about the VB‘s Application Interfaces (APIs) to CDF, and the native
CDF .DLL The following chapter will describe each API in detail.

3.1 Arguments Passing

Each CDF API has a sequence of parameters, which define the set of arguments that must be provided for that method
in VB applications. Being a strongly typed language, VB’s APIs to CDF follow the same rules for the parameters.
Arguments for APIs that perform CDF data get, put or inquire operations are required to have the signatures of the
defined VB value/string type or basic Object classes.

The input parameters in APIs for the CDF identifier, variable number, attribute number, entry number, record
number, record counts and record indices, etc, are always of fixed types. They must be a scalar of type long for
CDF identifier, integer for variable/attribute/entry number and record number/count, or an array of integers, integer(),
for variable dimensional sizes/variances and record data indices, counts and intervals. The output parameters must be
in either of the defined type or the VB base Object class. For example, for a returned data of type integer, the passing
argument in the calling application can be either a defined integer variable, or a variable of object class. Compilation
error will occur if any one of the such arguments from the applications does not match to that defined in the API.

A CDF identifier, when a CDF is open or created, is presented as a long variable, even in the underlying C# and CDF
native library it is a pointer.

For example, CDFsetEncoding and CDFgetEncoding are used to set and get the data encoding of a CDF. Both APIs
take two parameters, the CDF identifier, always a long, and the encoding, an integer. CDFsetEncoding take both
parameters from applications for input, while CDFgetEncoding has the CDF identifier as input and the encoding for
output. The following code shows how these methods can be used.

To set a CDF’s encoding,
dim status as integer

dim id as long
dim encoding as integer

19

encoding = IBMPC_ENCODING
status = CDFsetEncoding(id, encoding)

The CDF identifier, id, is set when a CDF is open or created. The encoding is set to PC encoding, defined in
CDFConstants class.

Similarly, to get the CDF’s encoding:

status = CDFgetEncoding(id, encoding)

APIs that read or write CDF data, either variable’s data (and their pad value) or metadata, are flexible when dealing
with data of different pre-defined CDF types, e.g., CDF _INT1, CDF UINT1, CDF FLOAT, CDF _CHAR,
CDF_EPOCH, etc. To pass the data value(s) to the APIs, one of the following forms can be used, depending on the
data type: VB numeric type or string in a scalar or array or simply the VB base object class. String or an array of
strings involves data of CDF_CHAR or CDF_UCHAR type. As VB’s character/string has a different characteristic
from the ASCII-based code in the CDF native DLL library, some manipulations are performed by the APIs when
dealing with such data. VB objects can be used, as a general form for all data value(s), when reading/writing data from
CDF. The called APIs will handle the passed object and map it to its corresponding CDF data type. Type casting the
objects returned by the APIs may be needed.

For example, methods: CDFputzVarData and CDFgetzVarData are used to write and read a single data value for an
zVariable in a CDF. Both take five parameters. The first four, the CDF identifier, variable number, record number and
indices, are for input and of fixed types of: long, integer, integer and an array of integers (integer()), respectively.
The last parameter is for data value, as an input for CDFputzVarData or an output for CDFgetzVarData. To call
CDFputzVarData, the data value has to be defined to match to variable’s underlying data type and given a value. It is
passed in as is. To retrieve the data by CDFgetzVarData, just specifies the variable with a proper data type and pass in
to the APL

The following samples show how these arguments are set up to write a data value to record 1, indices (1,1) for
zVariable, “zVarl”, a 2-dimentional of CDF_INT2.

dim status as integer

dim id as long

dim varNum as integer

dim recNum as integer = 1

dim indices() as integer = {1,1}

dim value as short = 100

varNum = CDFvarNum (id, “zVar1”)

status = CDFputzVarData(id, varNum, recNum, indices, value)
To read the data value the same variable at the same record and indices:
dim value as short

status = CDFgetzVarData(id, varNum, recNum, indices, value)

Similarly, value can be defined as a VB base object:

Dim valueo as object
status = CDFgetzVarData(id, varNum, recNum, indices, valueo)

Either use such statement:

20

Dim value as short = valueo

Or, use a proper type casting method, such as CType or DirectCast for a scalar, to make it a value type after the object
is returned. For object of an array, just assign it to a properly type-defined, dimensional variable.

dim value as short = Ctype(valueo, short)

APIs that handle multiple data values reads and writes, e.g., CDFputzVarRecordData and
CDFgetzVarRecordData for writing and reading a full data record an zVariable, are similar. They both take four
parameters: the first three, as input, are the CDF identifier, variable number, record number of the fixed types of long,
integer and integer, respectively, and the last one is the data values, input for CDFputzVarRecordData or output for
CDFgetzVarRecordData. The data values have to be defined (and assigned for input), according to the variable’s
underlying data type, and passed in as is.

The following samples show how the arguments are set in CDFputzVarRecordData to write the full record 1 for
zVariable, “zVarl”, a 2-dim (2,3) of type short. The first one passes the data value object as is, while the second one
uses a pointer to the data values.

dim status as integer

dim id as long

dim varNum as integer

dim recNum as integer = 1

dim values(,) as short = {{1,2,3},{11,12,13}}

varNum = CDFvarNum (id, “zVar1”)
status = CDFputzVarRecordData(id, varNum, recNum, values)

For CDFgetzVarRecordData to read back the same variable’s record data, one can use the same arguments as
CDFputzVarRecordData.

dim id as long

dim varNum as integer

dim recNum as integer = 1

dim values (,) as short

varNum = CDFvarNum (id, “zVar1”)

status = CDFgetzVarRecordData(id, varNum, recNum, values)

Console.WriteLine(“{0},{1},{2}”+Environment.Newline+”{3},{4},{5}”,values(0.0),values(0.1), values(0.2), _
values(1.0),values(1.1), values(1.2))

Alternatively, use a base object for the output:

dim valueso as object

status = CDFgetzVarRecordData(id, varNum, recNum, valueso)
dim values(,) as short = valueo

Console.WriteLine(“{0},{1},{2}”+Environment.Newline+”{3},{4},{5}”,values(0.0),values(0.1), values(0.2), _
values(1.0),values(1.1), values(1.2))

21

3.2 Multi-Dimensional Arrays

For data involved multidimensional arrays, CDF’s native .DLL data structure is equivalent to the rectangular array in
VB. Multidimensional arrays of jagged type are not supported by APIs. An extra dimension is added to the retrieved
data if the operations involve multiple records. For example, to read two full records from a variable of two-
dimensions, 3-by-4 by the hyper get method, the returned will be a three-dimensional, 2-by-3-by-4, object. Conversely,
if the hyper read skips certain dimension(s) from an operation, the returned object’s dimensionality will be reduced
accordingly. For example, to read a row or column from a variable’s two-dimensional record, the returned will be a
single array of either column or row count.

3.3 Data Type Equivalent

The following list shows the data types used by CDF and their corresponding types in VB:

e CDF INTI1 sbyte

e CDF INT2 short

e CDF INT4 int

e CDF INT8 long

e CDF UINTI byte

e CDF UINT2 ushort

e CDF UINT4 uint

e CDF BYTE sbyte

e CDF REAL single

e CDF FLOAT single

e CDF DOUBLE double

e CDF REAL8 double

e CDF EPOCH double

e CDF EPOCHI16 double(2)

e CDF _TIME TT2000 long

e CDF CHAR string (with manipulation)
e CDF UCHAR string (with manipulation)

34 Fixed Statement

Fixed statement is required to pin VB managed data objects, mainly arrays of numeric data, so that pointers of the
objects can be safely used and passed to the CDF APIs. By doing so, the objects’ addresses in the heap won’t be moved
around by the garbage collector during the operation.

For example, CDFhyperGetzVarData method can be called to retrieve a number of data values for a zVariable. For
instance, the following application code can be used to read the first four (4) records from a zVariable of 2-dim (2,3) of
type CDF_INT4. The declared data buffer, a 3-dimensional of int, is blocked in the fixed statement when the call is
made.

22

dim id as long

dim status as integer

dim varNum as integer

dim recNum as integer = 0, recCount as integer = 4, recInterval as integer = 1

dim indices() as integer = {0, 0}

dim counts() as integer = {2, 3}

dim intervals() as integer = {1,1}

dim data(4,2,3) as integer ¢ Dimension: record number, row, column

status = CDFhyperGetzVarData (id, varNum, recNum, recCount, recInterval, indices, counts, intervals, data)

3.5 Exception Handling

Except a few APIs, each call to a CDF method will return an operation status. If the status is abnormal, less than
CDF_OK, an exception might be thrown. It is recommended that the code for the CDF-based application be surrounded
by a try-catch block so an exception can be caught and handled. The methods to check the existence of a CDF entity,
e.g., entry, attribute, variable, will not throw exception if that entity is not in the CDF. The returned, informational
status will reflect so. Once an exception is thrown, the thrown object, if initiated from the CDF APIs, is a
CDFException class object. There are a couple of class methods, GetCurrentStatus and GetStatusMsg ,which can be
used to acquire the status when an exception is thrown and the descriptive information about that exception.

dim id as long
dim status as integer
dim encoding as integer
try
status = CDFopen(“TEST”, id)

status = CDFgetEncoding(id, encoding)

status = CDFclose(id)
catch ex as Exception
Console.WriteLine(‘“Exception: “+ex.toString())
Or,
dim status] as integer = ex.GetCurrentStatus()
Console.WriteLine(“Exception: “+ex.GetStatusMsg(status1))

}

3.6 Dimensional Limitations

The VB to CDF APIs follow the same dimensional restriction as in the CDF native DLL: a limit of ten (10) dimensions
a CDF variable’s numeric typed data record can have. For string typed data, represented in a CDF file with
CDF_CHAR or CDF_UCHAR type, a limit of four (4) dimensions is applied.

23

24

Chapter 4

4 Application Interface

This chapter covers all Application Interfaces (APIs) that VB applications can call to interact with CDF. Since C# APIs
to CDF had already been developed, they are the base for all .Net Framework applications for CDF. Pointers are used
extensively for passing the data, e.g., CDF identifier as void *, between C# applications, C# APIs and CDF native
DLL. Such pointer-based functions are hard to handle in VB application. For that, a new set of APIs is added to C#
APIs suite to specifically allow VB applications to use C# functions without the use of pointers.

There are two types of variables (rVariable and zVariable) in CDF, and they can happily coexist in a CDF: Every
rVariable in a CDF must have the same number of dimensions and dimension sizes while each zVariable can have its
own dimensionality. Since all the rVariables in a CDF must have the same dimensions and dimension sizes, there'll be
a lot of disk space wasted if a few variables need big arrays and many variables need small arrays. Since zVariable is
more efficient in terms of storage and offers more functionality than rVariable, use of zVariable is strongly
recommended. As a matter of fact, there’s no reason to use rVariables at all if you are creating a CDF file from scratch.
One may wonder why there are rVariables and zVariables, not just zVariables. When CDF was first introduced, only
rVariables were available. The inefficiencies with rVariables were quickly realized and addressed with the introduction
of zVariables in later CDF releases.

The description for each API will detail its parameters: their types, for input or output and what the method returns.
APIs that handle read/write of variable data and attribute entry may use a special indicator: TYPE, to specify the
parameters that can have different signatures. The acceptable data types for such method are specified. For example,
CDFgetzVarData method, returning a single zVariable value, is described as:

integer CDFgetEncoding (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ¢ out -- Data value.
‘TYPE -- VB value/string type or object

TYPE, as specified, can be defined a VB value or string (matching to the variable’s underlying data type) or simply a
VB base Object. The following sample shows how the API is used to retrieve a data value from the zVariable
“my_var”, a 2-dimensional, CDF_INT4 type at indices of {1,1} for record 1:

dim status as integer

dim indices() as integer = {1, 1}
dim id as long

dim value as integer

'siél.tus = CDFgetEncoding(id, CDFvarNum(id, “my_var™), 1, indices, value)

25

Alternatively, value can be defined as object:
dim value as object

.siél.tus = CDFgetEncoding(id, CDFvarNum(id, “my_var™), 1, indices, value)

APIs are grouped, based on the CDF entities they operate on. These groups consist of general library information, CDF
as a whole, variable and attribute/entry.

4.1 Library Information

The functions in this section are related to the current CDF library being used for the CDF operations, and they provide
useful information such as the current library version number and Copyright notice.

4.1.1 CDFgetDataTypeSize

3

integer CDFgetDataTypeSize (out -- Completion status code.
dataType as integer, ¢ in-- CDF data type.

numBytes as integer) ¢ out -- # of bytes for the given type.
CDFgetDataTypeSize returns the size (in bytes) of the specified CDF data type.

The arguments to CDFgetDataTypeSize are defined as follows:

dataType The CDF supported data type.

numBytes The size of dataType.

4.1.1.1. Example(s)

The following example returns the size of the data type CDF_INT4 that is 4 bytes.

dim status as integer ¢ Returned status code.
Dim numBytes as integer ¢ Number of bytes.
try

status = CDFgetDataTypeSize(CDF_INT4, &numBytes)

catch ex as Exception

26

end try

4.1.2 CDFgetLibraryCopyright

3

integer CDFgetLibraryCopyright (
copyright as string)

out -- Completion status code.
out -- Library copyright.

3

CDFgetLibraryCopyright returns the Copyright notice of the CDF library being used.
The arguments to CDFgetLibraryCopyright are defined as follows:

copyright The Copyright notice.

4.1.2.1. Example(s)

The following example returns the Copyright of the CDF library being used.

dim status as integer ¢ Returned status code.
Dim copyright as string ¢ CDF library copyright.
try

status = CDFgetLibraryCopyright(copyright)

catch ex as Exception

end try

4.1.3 CDFgetLibraryVersion

integer CDFgetLibraryVersion (
version as integer,

release as integer,

increment as integer,
sublncrement as string)

out -- Completion status code.
out -- Library version.

out -- Library release.

out -- Library increment.

out -- Library sub-increment.

CDFgetLibraryVersion returns the version and release information of the CDF library being used.

The arguments to CDFgetLibraryVersion are defined as follows:

27

version The library version number.

release The library release number.
increment The library incremental number.
subIncrement The library sub-incremental string, a single character.

4.1.3.1. Example(s)

The following example returns the version and release information of the CDF library that is being used.

3

Returned status code.

CDF library version number.

CDF library release number.

CDF library incremental number.

CDF library sub-incremental character.

dim status as integer

Dim version as integer
Dim release as integer

Dim increment as integer
Dim subIncrement as string

3
3
3

3

try
status = CDFgetLibraryVersion(version, release, increment, sublncrement)

catch ex as Exception

end try

4.1.4 CDFgetStatusText

dim varNum as integer CDFgetStatusText(¢ out -- Completion status code.
status as integer, ¢ 1in -- The status code.
message as string) out -- The status text description.

3

CDFgetStatusText is identical to CDFerror, a legacy CDF function, (see section 4.2.8), and the use of this method is
strongly encouraged over CDFerror as it might not be supported in the future. This method is used to inquire the text
explanation of a given status code. Chapter 5 explains how to interpret status codes and Appendix A lists all of the
possible status codes.

The arguments to CDFgetStatusText are defined as follows:

status The status code to check.

message The explanation of the status code.

28

4.1.4.1. Example(s)

The following example displays the explanation text for the error code that is returned from a call to CDFopenCDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim text as string ¢ Explanation text.

try

status = CDFopenCDF ("giss_wetl", id)
status = CDFclose(id)

catch ex as Exception
text = CDFgetStatusMsg(ex.CDFgetCurrentStatus()) ...

end try

4.2 CDF

The functions in this section provide CDF file-specific operations. Any operations involving variables or attributes are
described in the following sections. This CDF has to be a newly created or opened from an existing one.

4.2.1 CDFclose

Integer CDFclose(¢ out -- Completion status code.
id as long) ¢ in -- CDF identifier.

CDFclose closes the specified CDF. The CDF's cache buffers are flushed the CDF's open file is closed (or files in the
case of a multi-file CDF) and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDFclose to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.2.1.1. Example(s)

29

The following example will close an open CDF.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
try

status = CDFopen(“...”, id)
status = CDFclose (id)
catch ex as Exception

end try

4.2.2 CDFcloseCDF

Integer CDFcloseCDF (¢ out -- Completion status code.
id as long) ¢ in -- CDF identifier.

CDFcloseCDF closes the specified CDF. This method is identical to CDFclose, a legacy CDF function. The use of this
method is strongly encouraged over CDFclose as it might not be supported in the future. The CDF's cache buffers are
flushed the CDF's open file is closed (or files in the case of a multi-file CDF) and the CDF identifier is made available
for reuse.

NOTE: You must close a CDF with CDFcloseCDF to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFcloseCDF,
the CDF's cache buffers are left unflushed.

The arguments to CDFcloseCDF are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreateCDF or
CDFopenCDF.

4.2.2.1. Example(s)

The following example will close an open CDF.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
try

30

status = CDFopenCDF ("giss_wetl", id)

status = CDFcloseCDF (id)

catch ex as Exception

end try

4.2.3 CDFcreate

Integer CDFcreate(
CDFname as string,
numDims as integer,
dimSizes as integer(),
encoding as integer,
majority as integer,
id as long)

out -- Completion status

¢ in -- CDF file name.

in -- Number of dimensions, rVariables.
in -- Dimension sizes, rVariables.

in -- Data encoding.

in -- Variable majority.

¢ out-- CDF identifier.

CDFecreate, a legacy CDF function, creates a CDF as defined by the arguments. A CDF cannot be created if it already
exists. (The existing CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it
with CDFopenCDF, delete it with CDFdeleteCDF, and then recreate it with CDFcreate. If the existing CDF is
corrupted, the call to CDFopen will fail. (An error code will be returned.) In this case you must delete the CDF at the
command line. Delete the dotCDF file (having an extension of .cdf), and if the CDF has the multi-file format, delete all
of the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

The arguments to CDFcreate are defined as follows:

CDFname

numDims

dimSizes

encoding

majority

id

The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF_PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

Number of dimensions the rVariables in the CDF are to have. This may be as few as zero
(0) and at most CDF_ MAX DIMS.

The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this

argument is ignored (but must be present).

The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 2.7.

The majority for variable data. Specify one of the majorities described in Section 2.9.

The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with CDFcreate
is specified in the configuration file of your CDF distribution. Consult your system manager for this default.

31

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

4.2.3.1. Example(s)

The following example creates a CDF named “test1.cdf” with network encoding and row majority.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
dim numDims as integer = 3 Number of dimensions, rVariables.

Dim dimSizes() as integer = {180,360,10} ¢ Dimension sizes, rVariables.
dim majority as integer = ROW_MAJOR ¢ Variable majority.
try

status = CDFcreate ("testl", numDims, dimSizes, NETWORK ENCODING, majority, id)

catch ex as Exception

end try

4.2.4 CDFcreateCDF

Integer CDFcreateCDF(¢ out -- Completion status code.
cdfName as string, ‘¢ in -- CDF file name.
id as long) ¢ out-- CDF identifier.

CDFcreateCDF creates a CDF file. This method is a simple form of CDFcreate without the number of dimensions,
dimensional sizes, encoding and majority arguments. It is the better method if only zVariables are to be created in the
CDF. The created CDF will use the default encoding (HOST _ENCODING) and majority (ROW_MAJOR). A CDF
cannot be created if it already exists. (The existing CDF will not be overwritten.) If you want to overwrite an existing
CDF, you can either manually delete the file or open it with CDFopenCDF ,delete it with CDFdeleteCDF, and then
recreate it with CDFcreateCDF. If the existing CDF is corrupted, the call to CDFopenCDF will fail. (An error code
will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF file (having an
extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having extensions of .v0,.v1,.
..and .z0,.z1,.. .).

Note that a CDF file created with CDFcreateCDF can only accept zVariables, not rVariables. But this is fine since
zVariables are more flexible than rVariables. See the third paragraph of Chapter 3 for the differences between
rVariables and zVariables.

The arguments to CDFcreateCDF are defined as follows:
CDFname The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF _PATHNAME LEN characters. A CDF file name may contain disk and directory

specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

32

UNIX: File names are case-sensitive.

id The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDFcreateCDF is specified in the configuration file of your CDF distribution. Consult your system manager for this

default.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

4.2.4.1. Example(s)

The following example creates a CDF named “test1.cdf” with the default encoding and majority.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
try

status = CDFcreateCDF ("test1", id)

status = CDFclose (id)
catch ex as Exception

end try

4.2.5 CDFdelete

integer CDFdelete(¢ out -- Completion status code.
id as long) ¢ in -- CDF identifier.

CDFdelete, a legacy CDF function, deletes the specified CDF. The CDF files deleted include the dotCDF file (having
an extension of .cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdelete are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

33

4.2.5.1. Example(s)

The following example will open and then delete an existing CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFopen ("test2", id)
status = CDFdelete (id)

catch ex as Exception

end try

4.2.6 CDFdeleteCDF

integer CDFdeleteCDF(¢ out -- Completion status code.
id as long) ¢ in -- CDF identifier.

CDFdeleteCDF deletes the specified CDF. This method is identical to CDFdelete, and the use of this method is
strongly encouraged over CDFdelete as it might not be supported in the future. The CDF files deleted include the
dotCDF file (having an extension of .cdf), and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . .
and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDFdeleteCDF are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

4.2.6.1. Example(s)

The following example will open and then delete an existing CDF.

dim id as long ¢ CDF identifier.

34

dim status as integer ¢ Returned status code.

try
.s.t;tus = CDFopenCDF ("test2", id)
.s.téltus = CDFdeleteCDF(id)

cz;t.ch ex as Exception

end try

4.2.7 CDFdoc

integer CDFdoc(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

version as integer, ¢ out -- Version number.
release as integer, out -- Release number.
copyright as string) out -- copyright.

CDFdoc is used to inquire general information about a CDF. The version/release of the CDF library that created the
CDF is provided (e.g., CDF V3.1 is version 3, release 1) along with the CDF copyright notice. The copyright notice is
formatted for printing without modification.

The arguments to CDFdoc are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

version The version number of the CDF library that created the CDF.
release The release number of the CDF library that created the CDF.
copyright The Copyright notice of the CDF library that created the CDF. This string will contain a

newline character after each line of the Copyright notice.

4.2.7.1. Example(s)

The following example returns and displays the version/release and copyright notice.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.

Dim version as integer CDF version number.
Dim release as integer CDF release number.
Dim copyright as string ¢ Copyright notice.

3

3

35

try
status = CDFdoc (id, version, release, copyright)

catch ex as Exception

end try

4.2.8 CDFerror®

3

integer CDFerror(out -- Completion status code.
status as integer, ‘¢ in -- Status code.
message as string) ¢ out -- Explanation text.

CDFerror, a legacy CDF function, is used to inquire the explanation of a given status code (not just error codes).
Chapter 5 explains how to interpret status codes and Appendix A lists all of the possible status codes.
The arguments to CDFerror are defined as follows:

status The status code to check.

message The explanation of the status code.

4.2.8.1. Example(s)

The following example displays the explanation text if an error code is returned from a call to CDFopen.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim text as string ¢ Explanation text.

try

status = CDFopen ("giss_wetl", id)

catch ex as Exception
dim status as integer] = CDFerror(ex.GetCurrentStatus(), out text) ...

end try

5> A legacy CDF function. While it is still available in V3.1, CDFgetStatusText is the preferred function for it.

36

4.2.9 CDFgetCacheSize

integer CDFgetCacheSize (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
numBuffers as integer) ¢ out -- CDEF’s cache buffers.

CDFgetCacheSize returns the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.

The arguments to CDFgetCacheSize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreateCDF (or CDFcreate) or CDFopen.

numBuffers The number of cache buffers.

4.2.9.1. Example(s)

The following example returns the cache buffers for the open CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim numBuffers as integer ¢ CDF’s cache buffers.
try

status = CDFgetCacheSize (id, numBuffers)

catch ex as Exception

end try

4.2.10 CDFgetChecksum

integer CDFgetChecksum (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
checksum as integer) ¢ out-- CDF’s

CDFgetChecksum returns the checksum mode of a CDF. The CDF checksum mode is described in Section 2.20.

The arguments to CDFgetChecksum are defined as follows:

37

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreateCDF (or CDFcreate) or CDFopen.

checksum The checksum mode (NO_CHECKSUM or MD5_CHECKSUM).

4.2.10.1. Example(s)

The following example returns the checksum code for the open CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim checksum as integer ¢ CDF’s checksum.
try

status = CDFgetChecksum (id, checksum)

catch ex as Exception

end try

4.2.11 CDFgetCompression

integer CDFgetCompression (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
compressionType as integer, out -- CDF’s compression type.
compressionParms as integer(), out -- Compression parameters.
compressionPercentage as integer) out -- Compressed percentage.

CDFgetCompression gets the compression information of the CDF. It returns the compression type (method) and, if
compressed, the compression parameters and compression rate. CDF compression types/parameters are described in
Section 2.11. The compression percentage is the result of the compressed file size divided by its original, uncompressed
file size.®

The arguments to CDFgetCompression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

6 The compression ratio is (100 — compression percentage): the lower the compression percentage, the better the
compression ratio.

38

compressionType The type of the compression.
compressionParms The parameters of the compression.

compressionPercentage The compression rate.

4.2.11.1. Example(s)

The following example returns the compression information of the open CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim compressType as integer CDEF’s compression type.
Dim compressionParms() as integer ¢ Compression parameters.
dim compressionPercentage as integer ¢ Compression rate.

try
status = CDFgetCompression (id, compression, compressionParms, compressionPercentage)

catch ex as Exception

end try

4.2.12 CDFgetCompressionCacheSize

3

integer CDFgetCompressionCacheSize (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
numBuffers as integer) ¢ out -- CDF’s compressed cache buffers.

CDFgetCompressionCacheSize gets the number of cache buffers used for the compression scratch CDF file. Refer to
the CDF User’s Guide for description of caching scheme used by the CDF library.
The arguments to CDFgetCompressionCacheSize are defined as follows:

Id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

39

4.2.12.1. Example(s)

The following example returns the number of cache buffers used for the scratch file from the compressed CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.

dim numBuffers as integer ¢ Compression cache buffers.
try

status = CDFgetCompressionCacheSize (id, numBuffers)

catch ex as Exception

end try

4.2.13 CDFgetCompressionInfo

integer CDFgetCompressionInfo (
CDFname as string,

compType as integer,

cParms.as integer()

cSize as long.

uSize as long).

out -- Completion status code.
in -- CDF name.

out -- CDF compression type.
out -- Compression parameters.
out -- CDF compressed size.
out -- CDF uncompressed size.

CDFgetCompressionlnfo returns the compression type/parameters of a CDF without having to open the CDF. This
refers to the compression of the CDF - not of any compressed variables.

The arguments to CDFgetCompressionInfo are defined as follows:

CDFname The pathname of a CDF file without the .cdf file extension.
compType The CDF compression type.

cParms The CDF compression parameters.

cSize The compressed CDF file size.

uSize The size of CDF when decompress the originally compressed CDF.

4.2.13.1. Example(s)

The following example returns the compression information from a “unopen” CDF named “MY_TEST.cdf”.

40

dim status as integer ¢ Returned status code.

dim compType as integer ¢ Compression type.

dim cParms as integer() ¢ Compression parameters.
Dim cSize as long ¢ Compressed file size.
Dim uSize as long ¢ Decompressed file size.
try

status = CDFgetCompressionInfo(“MY_TEST”, compType, cParms, cSize, uSize)

catch ex as Exception

end try

4.2.14 CDFgetCopyright

integer CDFgetCopyright (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
copyright as string) ¢ out -- Copyright notice.
CDFgetCopyright gets the Copyright notice in a CDF.

The arguments to CDFgetCopyright are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

copyright CDF Copyright.

4.2.14.1. Example(s)

The following example returns the Copyright in a CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim copyright as string ¢ CDF’s copyright.

try

41

status = CDFgetCopyright (id, copyright)

catch ex as Exception

end try

4.2.15 CDFgetDecoding

3

integer CDFgetDecoding (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
decoding as integer) ¢ out -- CDF decoding.
CDFgetDecoding returns the decoding code for the data in a CDF. The decodings are described in Section 2.8.

The arguments to CDFgetDecoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

decoding The decoding of the CDF.

4.2.15.1. Example(s)

The following example returns the decoding for the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim decoding as integer ¢ Decoding.

try

status = CDFgetDecoding(id, decoding)
catch ex as Exception
end try

4.2.16 CDFgetEncoding

42

3

integer CDFgetEncoding (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
encoding as integer) ¢ out -- CDF encoding.
CDFgetEncoding returns the data encoding used in a CDF. The encodings are described in Section 2.7.

The arguments to CDFgetEncoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

4.2.16.1. Example(s)

The following example returns the data encoding used for the given CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim encoding as integer ¢ Encoding.

try

status = CDFgetEncoding(id, encoding)

catch ex as Exception

end try

4.2.17 CDFgetFileBackward

integer CDFgetFileBackward() ¢ out — File Backward Mode.

CDFgetFileBackward returns the backward mode information dealing with the creation of a new CDF file. A mode of
value 1 indicates when a new CDF file is created, it will be a backward version of V2.7, not the current library version.

The arguments to CDFgetFileBackward are defined as follows:

N/A

43

4.2.17.1. Example(s)

In the following example, the CDF’s file backward mode is acquired.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim mode as integer ¢ Backward mode.

try

mode = CDFgetFileBackward ()
if mode = 1 then

end if
catch ex as Exception

end try

4.2.18 CDFgetFormat

integer CDFgetFormat (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
format as integer) ¢ out -- CDF format.

CDFgetFormat returns the file format, single or multi-file, of the CDF. The formats are described in Section 2.5.
The arguments to CDFgetFormat are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

format The format of the CDF.

4.2.18.1. Example(s)

The following example returns the file format of the CDF.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.

44

dim format as integer ¢ Format.
try
status = CDFgetFormat(id, format)

catch ex as Exception

end try

4.2.19 CDFgetLeapSecondLastUpdated

integer CDFgetLeapSecondLastUpdated (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
lastUpdated as integer) ¢ out-- CDF format.

CDFgetLeapSecondLastUpdated returns the leap second last updated date from the CDF. This value indicates what/if
the leap second table this CDF is based on. It is of YYYYMMDD form. The value can also be negative 1 (-1), the field
not set (for older CDFs), or zero (0) if the leap second table is not being accessed. This field is only relevant to TT2000
data in the CDF.

The arguments to CDFgetLeapSecondLastUpdated are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

lastUpdated The date that the latest leap second was added to the leap second table.

4.2.19.1. Example(s)

The following example returns the date that the last leap second was added to the leap second table from the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim lastUpdatedas integer ¢ Format.

try

status = CDFgetLeapSecondLastUpdated(id, lastUpdated)

catch ex as Exception

end try

45

4.2.20 CDFgetMajority

3

integer CDFgetMajority (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
majority as integer) ¢ out -- Variable majority.

CDFgetMajority returns the variable majority, row or column-major, of the CDF. The majorities are described in
Section 2.9.
The arguments to CDFgetMajority are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

majority The variable majority of the CDF.

4.2.20.1. Example(s)

The following example returns the majority of the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim majority as integer ¢ Majority.

try

status = CDFgetMajority (id, majority)

catch ex as Exception

end try

4.2.21 CDFgetName

3

integer CDFgetName (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
name as string) ¢ out -- CDF name.

CDFgetName returns the file name of the specified CDF.

46

The arguments to CDFgetName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

name The file name of the CDF.

4.2.21.1. Example(s)

The following example returns the name of the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim name as string ¢ Name of the CDF.
try

status = CDFgetName (id, name)

catch ex as Exception

end try

4.2.22 CDFgetNegtoPosfp0Mode

integer CDFgetNegtoPosfpOMode (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
negtoPosfp0 as integer) ¢ out -- -0.0 to 0.0 mode.

CDFgetNegtoPosfpOMode returns the —0.0 to 0.0 mode of the CDF. You can use CDFsetNegtoPosfp0 method to set
the mode. The —0.0 to 0.0 modes are described in Section 2.16.

The arguments to CDFgetNegtoPosfp0Mode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 The —0.0 to 0.0 mode of the CDF.

4.2.22.1. Example(s)

47

The following example returns the —0.0 to 0.0 mode of the CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim negtoPosfp0 as integer ¢ -0.0 to 0.0 mode.

try

status = CDFgetNegtoPosfpOMode (id, negtoPosfp0)

catch ex as Exception

end try

4.2.23 CDFgetReadOnlyMode

integer CDFgetReadOnlyMode(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
readOnlyMode as integer) ¢ out-- CDF read-only mode.

CDFgetReadOnlyMode returns the read-only mode for a CDF. You can use CDFsetReadOnlyMode to set the mode of
readOnlyMode. The read-only modes are described in Section 2.14.
The arguments to CDFgetReadOnlyMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

readOnlyMode The read-only mode (READONLYon or READONLY off).

4.2.23.1. Example(s)

The following example returns the read-only mode for the given CDF.

dim id as long ¢ CDF identifier.

Dim status as integer

dim readMode as integer ¢ CDF read-only mode.
try

48

status = CDFgetReadOnlyMode (id, readMode)

catch ex as Exception

end try

4.2.24 CDFgetStageCacheSize

3

integer CDFgetStageCacheSize(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
numBuffers as integer) ¢ out -- The stage cache size.

CDFgetStageCacheSize returns the number of cache buffers being used for the staging scratch file a CDF. Refer to the
CDF User’s Guide for the description of the caching scheme used by the CDF library.
The arguments to CDFgetStageCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

4.2.24.1. Example(s)

The following example returns the number of cache buffers used in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer

dim numBuffers as integer ¢ The number of cache buffers.
try

status = CDFgetStageCacheSize (id, numBuffers)

catch ex as Exception

end try

49

4.2.25 CDFgetValidate

integer CDFgetValidate() ¢ out — CDF validation mode.

CDFgetValidate returns the data validation mode. This information reflects whether when a CDF is open, its certain
data fields are subjected to a validation process. 1 is returned if the data validation is to be performed, 0 otherwise.

The arguments to CDFgetVersion are defined as follows:

N/A

4.2.25.1. Example(s)

In the following example, it gets the data validation mode.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim validate as integer ¢ Data validation flag.
try

validate = CDFgetValidate ()

catch ex as Exception

end try

4.2.26 CDFgetVersion

integer CDFgetVersion(out -- Completion status code.

id as long, ¢ in -- CDF identifier.
version as integer, ¢ out -- CDF version.
release as integer, ¢ out-- CDF release.

increment as integer) out -- CDF increment.

CDFgetVersion returns the version/release information for a CDF file. This information reflects the CDF library that
was used to create the CDF file.

The arguments to CDFgetVersion are defined as follows:

50

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

version The CDF version number.
release The CDF release number.
increment The CDF increment number.

4.2.26.1. Example(s)

In the following example, a CDF’s version/release is acquired.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim version as integer CDF version.

dim release as integer ¢ CDF release

dim increment as integer ¢ CDF increment.

3

try
status = CDFgetVersion (id, version, release, increment)

catch ex as Exception

end try

4.2.27 CDFgetzMode

integer CDFgetzMode(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
zMode as integer) ¢ out-- CDF zMode.

CDFgetzMode returns the zMode for a CDF file. The zModes are described in Section 2.15.
The arguments to CDFgetzMode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

zMode The CDF zMode.

51

4.2.27.1. Example(s)

In the following example, a CDF’s zMode is acquired.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim zMode as integer ¢ CDF zMode.

try

status = CDFgetzMode (id, zMode)

catch ex as Exception

end try

4.2.28 CDFinquire

integer CDFinquire(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier

numDims as integer, ¢ out -- Number of dimensions, rVariables.
dimSizes as integer(), ¢ out -- Dimension sizes, rVariables.

out -- Data encoding.
out -- Variable majority.

encoding as integer,
majority as integer,

maxRec as integer, ¢ out -- CDF’s maximum record number, rVariables.
numVars as integer, ¢ out -- Number of rVariables in the CDF.
numAttrs as integer) ¢ out -- Number of attributes in the CDF.

CDFinquire returns the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data (since all rVariables’ dimension and dimension size are
the same). Knowing the variable majority can be used to optimize performance and is necessary to properly use the
variable hyper functions (for both rVariables and zVariables).

The arguments to CDFinquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

numDims The number of dimensions for the rVariables in the CDF.
dimSizes The dimension sizes of the rVariables in the CDF. dimSizes is a 1-dimensional array
containing one element per dimension. Each element of dimSizes receives the

corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

52

encoding

majority

maxRec

numVars

numAttrs

4.2.28.1. Example(s)

The encoding of the variable data and attribute entry data. The encodings are defined in
Section 2.7.

The majority of the variable data. The majorities are defined in Section 2.9.

The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these. Some rVariables may have fewer records actually written.
Use CDFrVarMaxWrittenRecNum to inquire the maximum record written for an
individual rVariable.

The number of rVariables in the CDF.

The number of attributes in the CDF.

The following example returns the basic information about a CDF.

dim id as long
dim status as integer

¢ CDF identifier.
Returned status code.

dim numDims as integer
Dim dimSizes() as integer
dim encoding as integer
dim majority as integer
dim maxRec as integer

dim numVars as integer
dim numAttrs as integer

try

status = CDFinquire (id, numDims, dimSizes, encoding, majority,

maxRec, numVars, numAttrs)

catch ex as Exception

end try

Number of dimensions, rVariables.
Dimension sizes, rVariables

Data encoding.

Variable majority.

Maximum record number,
rVariables.

Number of rVariables in CDF.
Number of attributes in CDF.

4.2.29 CDFinquireCDF

integer CDFinquireCDF(
id as long,

numDims as integer,
dimSizes as integer(),

out -- Completion status code.

¢ in-- CDF identifier

out -- Number of dimensions for rVariables.
out -- Dimension sizes for rVariables.

53

encoding as integer,
majority as integer,
maxrRec as integer,
numrVars as integer,
maxzRec as integer,
numzVars as integer,
numAttrs as integer)

out -- Data encoding.

out -- Variable majority.

out -- Maximum record number among rVariables .
¢ out -- Number of rVariables in the CDF.

out -- Maximum record number among zVariables .
¢ out -- Number of zVariables in the CDF.

¢ out -- Number of attributes in the CDF.

CDFinquireCDF returns the basic characteristics of a CDF. This method expands the method CDFinquire by acquiring
extra information regarding the zVariables. Knowing the variable majority can be used to optimize performance and is
necessary to properly use the variable hyper-get/put functions.

The arguments to CDFinquireCDF are defined as follows:

id

numDims

dimSizes

encoding

majority

maxrRec

numrVars

maxzRec

numzVars

numAttrs

4.2.29.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of dimensions for the rVariables in the CDF. Note that all the rVariables’
dimensionality in the same CDF file must be the same.

The dimension sizes of the rVariables in the CDF (note that all the rVariables’ dimension
sizes in the same CDF file must be the same). dimSizes is a 1-dimensional array
containing one element per dimension. Each element of dimSizes receives the
corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

The encoding of the variable data and attribute entry data. The encodings are defined in
Section 2.7.

The majority of the variable data. The majorities are defined in Section 2.9.

The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
maxRec is the largest of these.

The number of rVariables in the CDF.

The maximum record number written to a zVariable in the CDF. Note that the maximum
record number written is also kept separately for each zVariable in the CDF. The value of
maxRec is the largest of these. Some zVariables may have fewer records than actually
written. Use CDFgetzVarMaxWrittenRecNum to inquire the actual number of records
written for an individual zVariable.

The number of zVariables in the CDF.

The number of attributes in the CDF.

The following example returns the basic information about a CDF.

54

dim id as long

dim status as integer

dim numDims as integer
Dim dimSizes() as integer
dim encoding as integer
dim majority as integer
dim maxRec as integer
dim numrVars as integer
dim maxzRec as integer
dim numzVars as integer

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables .

Data encoding.

Variable majority.

Maximum record number, rVariables.
Number of rVariables in CDF.
Maximum record number, zVariables.
Number of zVariables in CDF.

dim numAttrs as integer ¢ Number of attributes in CDF.

try
status = CDFinquireCDF (id, numDims, dimSizes, encoding, majority,
maxrRec, numrVars, maxzRec, numzVars, numAttrs)

catch ex as Exception

end try

4.2.30 CDFopen

integer CDFopen(¢ out -- Completion status code.
CDFname as string, ‘¢ in -- CDF file name.
id as long) ¢ out-- CDF identifier.

CDFopen, a legacy CDF function, opens an existing CDF. The CDF is initially opened with only read access. This
allows multiple applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is
automatically closed and reopened with read/write access. (The method will fail if the application does not have or
cannot get write access to the CDF.)

The arguments to CDFopen are defined as follows:

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF _PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFclose must be used to close the CDF before your application exits to ensure that the CDF will be correctly
written to disk.

55

4.2.30.1. Example(s)

The following example will open a CDF named “NOAA1.cdf”.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim CDFname as string = "NOAA1" ¢ file name of CDF.

try

status = CDFopen (CDFname, id)

catch ex as Exception

end try

4.2.31 CDFopenCDF

Integer CDFopenCDF(¢ out -- Completion status code.
CDFname as string, ‘¢ in -- CDF file name.
id as long) ¢ out-- CDF identifier.

CDFopenCDF opens an existing CDF. This method is identical to CDFopen, and the use of this method is strongly
encouraged over CDFopen as it might not be supported in the future. The CDF is initially opened with only read
access. This allows multiple applications to read the same CDF simultaneously. When an attempt to modify the CDF
is made, it is automatically closed and reopened with read/write access. The method will fail if the application does not
have or cannot get write access to the CDF.

The arguments to CDFopenCDF are defined as follows:

CDFname The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF _PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on OpenVMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: CDFcloseCDF must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk.

56

4.2.31.1. Example(s)

The following example will open a CDF named “NOAA1.cdf”.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
Dim CDFname as string = "NOAA1" ¢ file name of CDF.

try

status = CDFopenCDF (CDFname, id)

catch ex as Exception

end try

4.2.32 CDFselect

integer CDFselect(¢ out -- Completion status code.
id as long) ¢ in -- CDF identifier.

CDFselect selects an opened CDF as the current CDF. Only one CDF is allowed to be current. To access data from a
CDF, that CDF must be selected as the current. This method is no longer needed as the methods involved CDF
operations always need the CDF identifier, as the first argument, so it can be set as current before other operations can
be applied.

The arguments to CDFselect are defined as follows:

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: When a CDF is opened, it becomes the current. No CDF is current after CDFcloseCDF is called to close the
file.

4.2.32.1. Example(s)

The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is
also opened.

aim id1 as long, id2 as long ¢ CDF identifier.

57

dim status as integer ¢ Returned status code.

Dim CDFnamel as string = "NOAA1" ¢ file name of CDF.
Dim CDFname?2 as string = "NOAA2" ¢ file name of CDF.
try

.s.t;tus = CDFopenCDF (CDFnamel, idl)
status = CDFopenCDF (CDFname2, id2)
status = CDFselect(id1)
's.t.a.ltus = CDFclose(id1)
status = CDFclose(id2)

catch ex as Exception

end try

4.2.33 CDFselectCDF

integer CDFselectCDF(¢ out -- Completion status code.
id as long) ¢ in -- CDF identifier.

CDFselectCDF selects an opened CDF as the current CDF. Only one CDF is allowed to be current. To access data from
a CDF, that CDF must be selected as the current. This method is no longer needed as the methods involved CDF
operations always need the CDF identifier, as the first argument, so it can be set as current before other operations can
be applied. This method is identical to CDFselect.

The arguments to CDFselectCDF are defined as follows:

id The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

NOTE: When a CDF is opened, it becomes the current. No CDF is current after CDFcloseCDF is called to close the
file.

4.2.33.1. Example(s)

The following example will select a CDF named “NOAA1.cdf” as the current CDF while another file “NOAA2.cdf” is
also opened.

dim id1 as long, i2 as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
Dim CDFnamel as string = "NOAA1" ¢ file name of CDF.

Dim CDFname? as string = "NOAA2" ¢ file name of CDF.

58

try
.s.t;tus = CDFopenCDF (CDFnamel, idl)
status = CDFopenCDF (CDFname?2, id2)
status = CDFselectCDF(id1)
's.t.a.ltus = CDFclose(id1)
status = CDFclose(id2)

catch ex as Exception

end try

4.2.34 CDFsetCacheSize

integer CDFsetCacheSize (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
numBuffer as integer) ¢ in -- CDF’s cache buffers.

CDFsetCacheSize specifies the number of cache buffers being used for the dotCDF file when a CDF is open. Refer to
the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCacheSize are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

4.2.34.1. Example(s)

The following example extends the number of cache buffers to 500 for the open CDF file. The default number is 300
for a single-file format CDF on Unix systems.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim cacheBuffers as integer ¢ CDF’s cache buffers.

'cacheBuffers =500
try

status = CDFsetCacheSize (id, cacheBuffers)

59

catch ex as Exception

end try

4.2.35 CDFsetChecksum

integer CDFsetChecksum (¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

checksum as integer) ¢ in -- CDF’s checksum mode.
CDFsetChecksum specifies the checksum mode for the CDF. The CDF checksum mode is described in Section 2.20.

The arguments to CDFsetChecksum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

checksum The checksum mode (NO_CHECKSUM or MD5 CHECKSUM).

4.2.35.1. Example(s)

The following example turns off the checksum flag for the open CDF file..

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim checksum as integer ¢ CDF’s checksum.

checksum=NO_ CHECKSUM
try

status = CDFsetChecksum (id, checksum)

catch ex as Exception

end try

4.2.36 CDFsetCompression

3

integer CDFsetCompression (out -- Completion status code.
id as long, ¢ in -- CDF identifier.

60

3

in -- CDF’s compression type.
in -- CDF’s compression parameters.

compressionType as integer,
CompressionParms as integer())

3

CDFsetCompression specifies the compression type and parameters for a CDF. This compression refers to the CDF,
not of any variables. The compressions are described in Section 2.11.

The arguments to CDFsetCompression are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

compressionType The compression type .

compressionParms The compression parameters.

4.2.36.1. Example(s)

The following example uses GZIP.6 to compress the CDF file.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.

dim compressionType as integer CDEF’s compression type.

Dim compressionParms(1) as integer CDEF’s compression parameters.

3

compressionType = GZIP_ COMPRESSION
compressionParms(0) = 6

try
status = CDFsetCompression (id, compressionType, compressionParms) ...

catch ex as Exception

end try

4.2.37 CDFsetCompressionCacheSize

3

integer CDFsetCompressionCacheSize (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
numBuffers as integer) ¢ in -- CDF’s compressed cache buffers.

CDFsetCompressionCacheSize specifies the number of cache buffers used for the compression scratch CDF file. Refer
to the CDF User’s Guide for the description of the cache scheme used by the CDF library.

The arguments to CDFsetCompressionCacheSize are defined as follows:

61

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

compressionNumBuffers The number of cache buffers.

4.2.37.1. Example(s)

The following example extends the number of cache buffers used for the scratch file from the compressed CDF file to
100. The default cache buffers is 80 for Unix systems.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.

dim numBuffers as integer = 100 ¢ CDF’s compression cache buffers.
try

status = CDFsetCompressionCacheSize (id, numBuffers)

catch ex as Exception

end try

4.2.38 CDFsetDecoding

3

integer CDFsetDecoding (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
decoding as integer) ‘¢ in -- CDF decoding.
CDFsetDecoding sets the decoding of a CDF. The decodings are described in Section 2.8.

The arguments to CDFsetDecoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

decoding The decoding of a CDF.

4.2.38.1. Example(s)

The following example sets NETWORK DECODING to be the decoding scheme in the CDF.

62

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim decoding as integer ¢ Decoding.

decoding = NETWORK DECODING
try

status = CDFsetDecoding (id, decoding)

catch ex as Exception

end try

4.2.39 CDFsetEncoding

integer CDFsetEncoding (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
encoding as integer) ‘¢ in -- CDF encoding.

CDFsetEncoding specifies the data encoding of the CDF. A CDF’s encoding may not be changed after any variable
values have been written. The encodings are described in Section 2.7.
The arguments to CDFsetEncoding are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

encoding The encoding of the CDF.

4.2.39.1. Example(s)

The following example sets the encoding to HOST ENCODING for the CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim encoding as integer ¢ Encoding.

encoding = HOST _ENCODING
try

63

status = CDFsetEncoding(id, encoding)

catch ex as Exception

end try

4.2.40 CDFsetFileBackward

void CDFsetFileBackward(
mode as integer) ¢ in -- File backward Mode.

CDFsetFileBackward sets the backward mode. When the mode is set as FILEBACKWARDon, any new CDF files
created are of version 2.7, instead of the underlining library version. If mode FILEBACKWARDoff is used, the default
for creating new CDF files, the library version is the version of the file.

The arguments to CDFsetFileBackward are defined as follows:

mode The backward mode.

4.2.40.1. Example(s)

In the following example, it sets the file backward mode to FILEBACKWARDoff, which means that any files to be
created will be of version V3.*, the same as the library version.

try
CDFsetFileBackward (FILEBACKW ARDoff)

catch ex as Exception

end try

4.2.41 CDFsetFormat

integer CDFsetFormat (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
format as integer) ¢ in -- CDF format.

64

CDFsetFormat specifies the file format, either single or multi-file format, of the CDF. A CDF’s format may not be
changed after any variable values have been written. The formats are described in Section 2.5.

The arguments to CDFsetFormat are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

format The file format of the CDF.

4.2.41.1. Example(s)

The following example sets the file format to MULTI_FILE for the CDF. The default is SINGLE FILE format.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim format as integer ¢ Format.

format = MULTI_FILE
try

status = CDFsetFormat(id, format)

catch ex as Exception

end try

4.2.42 CDFsetLeapSecondLastUpdated

integer CDFsetLeapSecondLastUpdated (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
lastUpdated as integer) ‘¢ in -- Leap second last updated date

CDFsetLeapSecondLastUpdated respecifies the leap second last updated date in the CDF. The value, in YYYYMMDD
form, indicates what/if the leap second table this CDF is based upon. The value is either a valid entry in the currently
used leap second table, or zero (0). Value zero means the CDF is not using any leap second table. This field is only
relevant to TT2000 data. Normally, this function is used for older CDFs that have not had the field set.

The arguments to CDFsetLeapSecondLastUpdated are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

lastUpdated The date the latest leap second was added to the leap second table.

65

4.2.42.1. Example(s)

The following example resets the leap second last updated date in the CDF. Likely, the file’s field was not set originally
(an older CDF).

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
dim lastUpdated as integer ¢ Leap second last updated.

lastUpdated = 20150701
try

status = CDFsetLeapSecondLastUpdated (id, lastUpdated)

catch ex as Exception

end try

4.2.43 CDFsetMajority

3

integer CDFsetMajority (out -- Completion status code.
id as long, ¢ in -- CDF identifier.
majority as integer) ¢ in -- CDF variable majority.

CDFsetMajority specifies the variable majority, either row or column-major, of the CDF. A CDF’s majority may not be
changed after any variable values have been written. The majorities are described in Section 2.9.

The arguments to CDFsetMajority are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

majority The variable majority of the CDF.

4.2.43.1. Example(s)

The following example sets the majority to COLUMN_MAIJOR for the CDF. The default is ROW_MAJOR.

dim id as long ¢ CDF identifier.

66

Dim status as integer ¢ Returned status code.
Dim majority as integer ¢ Majority.

majority = COLUMN_MAJOR
try

status = CDFsetMajority (id, majority)

catch ex as Exception

end try

4.2.44 CDFsetNegtoPosfp0Mode

integer CDFsetNegtoPosfpOMode (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
negtoPosfp0 as integer) ¢ in -- -0.0 to 0.0 mode.

CDFsetNegtoPosfpOMode specifies the —0.0 to 0.0 mode of the CDF. The —0.0 to 0.0 modes are described in Section
2.16.

The arguments to CDFsetNegtoPosfpOMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

negtoPosfp0 The —0.0 to 0.0 mode of the CDF.

4.2.44.1. Example(s)

The following example sets the —0.0 to 0.0 mode to ON for the CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim negtoPosfp0 as integer ¢ -0.0 to 0.0 mode.

negtoPosfp0 = NEGtoPOSfpOon
try

status = CDFsetNegtoPosfpOMode (id, negtoPosfp0)

catch ex as Exception

67

end try

4.2.45 CDFsetReadOnlyMode

integer CDFsetReadOnlyMode(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
readOnlyMode as integer) ¢ in -- CDF read-only mode.
CDFsetReadOnlyMode specifies the read-only mode for a CDF. The read-only modes are described in Section 2.14.

The arguments to CDFsetReadOnlyMode are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

readOnlyMode The read-only mode.

4.2.45.1. Example(s)

The following example sets the read-only mode to OFF for the CDF.

dim id as long ¢ CDF identifier.
Dim readMode as integer ¢ CDF read-only mode.
Dim status as integer

'readMode = READONLY off
try

status = CDFsetReadOnlyMode (id, readMode)

catch ex as Exception

end try

4.2.46 CDFsetStageCacheSize

integer CDFsetStageCacheSize(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
numBuffers as integer) ‘¢ in -- The stage cache size.

68

CDFsetStageCacheSize specifies the number of cache buffers being used for the staging scratch file a CDF. Refer to
the CDF User’s Guide for the description of the caching scheme used by the CDF library.

The arguments to CDFsetStageCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of cache buffers.

4.2.46.1. Example(s)

The following example sets the number of stage cache buffers to 10 for a CDF.

dim id as long ¢ CDF identifier.
Dim numBufffers as integer ¢ The number of cache buffers.
Dim status as integer

ﬁumBufffers =10
try

status = CDFsetStageCacheSize (id, numBuffers)

catch ex as Exception

end try

4.2.47 CDFsetValidate

void CDFsetValidate(
mode as integer) ¢ in -- File Validation Mode.

CDFsetValidate sets the data validation mode. The validation mode dedicates whether certain data in an open CDF file
will be validated. This mode should be set before the any files are opened. Refer to Data Validation Section 2.21.

The arguments to CDFgetVersion are defined as follows:

mode The validation mode.

69

4.2.47.1. Example(s)

In the following example, it sets the validation mode to be on, so any following CDF files are subjected to the data
validation process when they are open.

try
CﬁfsetValidate (VALIDATEFILEon)
cz;t;:h ex as Exception
end try
4.2.48 CDFsetzMode

integer CDFsetzMode(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
zMode as integer) ¢ in -- CDF zMode.

CDFsetzMode specifies the zMode for a CDF file. The zModes are described in Section 2.15 and see the Concepts
chapter in the CDF User’s Guide for a more detailed information on zModes. zMode is used when dealing with a CDF
file that contains 1) rVariables, or 2) rVariables and zVariables. If you want to treat rVariables as zVariables, it’s
highly recommended to set the value of zMode to zMODEon2.

The arguments to CDFsetzMode are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

zMode The CDF zMode.

4.2.48.1. Example(s)

In the following example, a CDF’s zMode is specified to zMODEon2: all rVariables are treated as zVariables with
NOVARY dimensions being eliminated.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

Dim zMode as integer ¢ CDF zMode.

'zMode = zMODEon2
try

70

status = CDFsetzMode (id, zMode)

catch ex as Exception

end try

4.3 Variables

The methods in this section are all CDF variable-specific. A variable, either a rVariable or zVariable, is identified by
its unique name in a CDF or a variable number. Before you can perform any operation on a variable, the CDF in which
it resides in must be opened.

4.3.1 CDFcloserVar

3

integer CDFcloserVar(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer) ¢ in -- rVariable number.

CDFcloserVar closes the specified rVariable file from a multi-file format CDF. Note that rVariables in a single-file
CDF don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed.
However, the CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have
made will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful
call to CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFcloserVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The variable number for the open rVariable’s file. This identifier must have been initialized by a call
to CDFcreaterVar or CDFgetVarNum.

4.3.1.1. Example(s)

The following example will close an open rVariable file from a multi-file CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ rVariable number.

71

try
varNum = CDFgetVarNum (id, “VAR_NAME1”)
status = CDFcloserVar (id, varNum)

catch ex as Exception

end try

4.3.2 CDFclosezVar

3

integer CDFclosezVar(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer) ¢ in -- zVariable number.

CDFclosezVar closes the specified zVariable file from a multi-file format CDF. Note that zVariables in a single-file
CDF don’t need to be closed. The variable's cache buffers are flushed before the variable's open file is closed.
However, the CDF file is still open.

NOTE: For the multi-file CDF, you must close all open variable files to guarantee that all modifications you have
made will actually be written to the CDF's file(s). If your program exits, normally or otherwise, without a successful
call to CDFcloseCDF, the CDF's cache buffers are left unflushed.

The arguments to CDFclosezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The variable number for the open zVariable’s file. This identifier must have been initialized by a call
to CDFcreatezVar or CDFgetVarNum.

4.3.2.1. Example(s)

The following example will close an open zVariable file from a multi-file CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ zVariable number.

try

varNum = CDFgetVarNum (id, “VAR_NAME1”)

72

status = CDFclosezVar (id, varNum)

catch ex as Exception

end try

4.3.3 CDFconfirmrVarExistence

3

integer CDFconfirmrVarExistence(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varName as string) ¢ in -- rVariable name.

CDFconfirmrVarExistence confirms the existence of a rVariable with a given name in a CDF. If the rVariable does not
exist, an error code will be returned. No exception is thrown if the variable is not found.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName The rVariable name to check.

4.3.3.1. Example(s)

The following example checks the existence of rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFconfirmrVarExistence (id, “MY_VAR”)
if status <> CDF_OK then UserStatusHandler (status)

catch ex as Exception
end try

4.3.4 CDFconfirmrVarPadValueExistence

73

3

integer CDFconfirmrVarPadValueExistence(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer) ¢ in -- rVariable number.

CDFconfirmrVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
rVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO PADVALUE_SPECIFIED will be returned. No exception is thrown if the variable’s pad value is not defined.

The arguments to CDFconfirmrVarPadValueExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

4.3.4.1. Example(s)

The following example checks the existence of the pad value of rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ rVariable number.

try
varNum = CDFgetVarNum(id, “MY_VAR”)
status = CDFconfirmrVarPadValueExistence (id, varNum)
if status <> NO_PADVALUE_SPECIFIED then

“end if

catch ex as Exception

end try

4.3.5 CDFconfirmzVarExistence

3

integer CDFconfirmzVarExistence(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varName as string) ¢ in -- zVariable name.

74

CDFconfirmzVarExistence confirms the existence of a zVariable with a given name in a CDF. If the zVariable does
not exist, an error code will be returned. No exception is thrown if the variable is not found.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varName The zVariable name to check.

4.3.5.1. Example(s)

The following example checks the existence of zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFconfirmzVarExistence (id, “MY_VAR?”)
if status <> CDF_OK then UserStatusHandler (status)

catch ex as Exception

end try

4.3.6 CDFconfirmzVarPadValueExistence

3

integer CDFconfirmzVarPadValueExistence(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer) ¢ in -- zVariable number.

CDFconfirmzVarPadValueExistence confirms the existence of an explicitly specified pad value for the specified
zVariable in a CDF. If an explicit pad value has not been specified, the informational status code
NO PADVALUE_SPECIFIED will be returned. No exception is thrown if the variable’s pad value is not defined.

The arguments to CDFconfirmzVarPadValueExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

75

4.3.6.1. Example(s)

The following example checks the existence of the pad value of zVariable “MY_VAR” in a CDF.

dim id as longid
Dim status as integer
Dim varNum as integer

try
varNum = CDFgetVarNum(id, “MY_VAR”)

status = CDFconfirmzVarPadValueExistence (id, varNum)
if status <> NO_PADVALUE_SPECIFIED then

“end if

catch ex as Exception

end try

4.3.7 CDFcreaterVar

integer CDFcreaterVar(
id as long,

varName as string,
dataType as integer,
numElements as integer,
recVariance as integer,
dimVariances as integer(),
varNum as integer)

¢ CDF identifier.
¢ Returned status code.
¢ zVariable number.

out -- Completion status code.

in -- CDF identifier.

in -- rVariable name.

in -- Data type.

in -- Number of elements (of the data type).
in -- Record variance.

in -- Dimension variances.

out -- rVariable number.

CDFcreaterVar is used to create a new rVariable in a CDF. A variable (rVariable or rVariable) with the same name

must not already exist in the CDF.

The arguments to CDFcreaterVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varName The name of the rVariable to create. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

dataType The data type of the new rVariable. Specify one of the data types defined in Section 2.6.

76

numElements

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The rVariable's record variance. Specify one of the variances defined in Section 2.10.
The rVariable's dimension variances. Each element of dimVariances specifies the

corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional rVariables this argument is ignored (but must

The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVariable. An existing rVariable's number may

recVariance
dimVariances
be present).
varNum
be determined with the CDFgetVarNum function.
4.3.7.1. Example(s)

The following example will create several rVariables in a 2-dimensional CDF.

dim id as long

Dim status as integer

Dim EPOCHrecVary as integer = VARY

Dim LATrecVary as integer = NOVARY

Dim LONrecVary as integer = NOVARY

Dim TMPrecVary as integer = VARY

Dim EPOCHdimVarys() as integer = {NOVARY,NOVARY}
Dim LATdimVarys() as integer = {VARY,VARY}
Dim LONdimVarys() as integer = {VARY,VARY}
Dim TMPdimVarys() as integer = {VARY,VARY}
Dim EPOCHvarNum as integer

Dim LATvarNum as integer

Dim LONvarNum as integer

Dim TMPvarNum as integer

try

CDF identifier.

Returned status code.
EPOCH record variance.
LAT record variance.

LON record variance.

TMP record variance.
EPOCH dimension variances.
LAT dimension variances.
LON dimension variances.
TMP dimension variances.
EPOCH rVariable number.
LAT rVariable number.
LON rVariable number.
TMP rVariable number.

status = CDFcreaterVar (id, "EPOCH", CDF_EPOCH, 1, EPOCHrecVary, _

EPOCHdimVarys, EPOCH varNum)

status = CDFcreaterVar (id, "LATITUDE", CDF_INT2, 1, LATrecVary, LATdimVarys, LATvarNum)
status = CDFcreaterVar (id, "INTITUDE", CDF _INT2, 1, LONrecVary, LONdimVarys, LONvarNum)
status = CDFcreaterVar (id, "TEMPERATURE", CDF_REALA4, 1, TMPrecVary, _

TMPdimVarys, TMPvarNum)

catch ex as Exception

end try

77

4.3.8 CDFcreatezVar

integer CDFcreatezVar(
id as long,

varName as string,
dataType as integer,
numElements as integer,
numDims as integer,
dimSizes as integer(),
recVariance as integer,
dimVariances as integer(),

out -- Completion status code.
in -- CDF identifier.

in -- zVariable name.

in -- Data type.

in -- Number of dimensions.
in -- Dimension sizes

in -- Record variance.

in -- Dimension variances.

in -- Number of elements (of the data type).

varNum as integer)

out -- zVariable number.

CDFcreatezVar is used to create a new zVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFcreatezVar are defined as follows:

id

varName

dataType

numElements

numDims

dimSizes

recVariance

dimVariances

varNum

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The name of the zVariable to create. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

The data type of the new zVariable. Specify one of the data types defined in Section 2.6.

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

Number of dimensions the zVariable. This may be as few as zero (0) and at most
CDF_MAX DIMS.

The size of each dimension. Each element of dimSizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional zVariables this
argument is ignored (but must be present).

The zVariable's record variance. Specify one of the variances defined in Section 2.10.

The zVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional zVariables this argument is ignored (but
must be present).

The number assigned to the new zVariable. This number must be used in subsequent

CDF function calls when referring to this zVariable. An existing zVariable's number
may be determined with the CDFgetVarNum function.

78

4.3.8.1. Example(s)

The following example will create several zVariables in a CDF. In this case EPOCH is a 0-dimensional, LAT and

LON are 2-diemnational, and TMP is a 1-dimensional.

dim id as long

Dim status as integer

Dim EPOCHrecVary as integer = VARY

Dim LATrecVary as integer = NOVARY

Dim LONrecVary as integer = NOVARY

Dim TMPrecVary as integer = VARY

Dim EPOCHdimVarys() as integer = (NOVARY}
Dim LATdimVarys() as integer = {VARY,VARY}
Dim LONdimVarys() as integer = {VARY,VARY}
Dim TMPdimVarys() as integer = {VARY,VARY}
Dim EPOCHvarNum as integer

Dim LATvarNum as integer

Dim LONvarNum as integer

Dim TMPvarNum as integer

Dim EPOCHdimSizes() as integer = {3}

Dim LATLONdimSizes() as integer = {2,3}

Dim TMPdimSizes() as integer = {3}

try

CDF identifier.

Returned status code.
EPOCH record variance.
LAT record variance.

LON record variance.

TMP record variance.
EPOCH dimension variances.
LAT dimension variances.
LON dimension variances.
TMP dimension variances.
EPOCH zVariable number.
LAT zVariable number.
LON zVariable number.
TMP zVariable number.
EPOCH dimension sizes.
LAT/LON dimension sizes.
TMP dimension sizes.

status = CDFcreatezVar (id, "EPOCH", CDF_EPOCH, 1, 0, EPOCHdimSizes, EPOCHrecVary, _

EPOCHdimVarys, EPOCHvarNum)

status = CDFcreatezVar (id, "LATITUDE", CDF _INT2, 1,2, LATLONdimSizes,LATrecVary, _

LATdimVarys, LATvarNum)

status = CDFcreatezVar (id, "INTITUDE", CDF_INT2, 1,2, LATLONdimSizes, LONrecVary, _

LONdimVarys, LONvarNum)

status = CDFcreatezVar (id, "TEMPERATURE", CDF_REALA4, 1, 1, TMPdimSizes, TMPrecVary, _

TMPdimVarys, TMPvarNum)

catch ex as Exception

end try

4.3.9 CDFdeleterVar

integer CDFdeleterVar(
id as long,
varNum as integer)

CDFdeleterVar deletes the specified rVariable from a CDF.

The arguments to CDFdeleterVar are defined as follows:

79

out -- Completion status code.

¢ in-- CDF identifier.

in -- rVariable identifier.

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number to be deleted.

4.3.9.1. Example(s)

The following example deletes the rVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ rVariable number.
try

varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFdeleterVar (id, varNum)

catch ex as Exception

end try

4.3.10 CDFdeleterVarRecords

integer CDFdeleterVarRecords(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- rVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeleterVarRecords deletes a range of data records from the specified rVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.”
The arguments to CDFdeleterVarRecords are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The identifier of the rVariable.

7 Normal variables without sparse records have contiguous physical records. Once a section of the records get deleted,
the remaining ones automatically fill the gap.

80

startRec The starting record number to delete.

endRec The ending record number to delete.

4.3.10.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF.

Note: The first record is numbered as 0.

dim id as long

Dim status as integer
Dim varNum as integer
Dim startRec as integer
Dim endRec as integer

try

varNum = CDFgetVarNum (id, “MY_VAR?”)
startRec = 10
endRec =20

status = CDFdeleterVarRecords (id, varNum, startRec, endRec)

catch ex as Exception

end try

4.3.11 CDFdeleterVarRecordsRenumber

integer CDFdeleterVarRecordsRenumber(
id as long,

varNum as integer,

startRec as integer,

endRec as integer)

¢ CDF identifier.

¢ Returned status code.

¢ rVariable number.

¢ Starting record number.
Ending record number.

3

out -- Completion status code.
in -- CDF identifier.

in -- rVariable identifier.

in -- Starting record number.
in -- Ending record number.

CDFdeleterVarRecordsRenumber deletes a range of data records from the specified rVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s

records.

The arguments to CDFdeleterVarRecordsRenumber are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopenCDF.

81

varNum The identifier of the rVariable.
startRec The starting record number to delete.

endRec The ending record number to delete.

4.3.11.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the rVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varNum as integer rVariable number.

Dim startRec as integer Starting record number.
Dim endRec as integer Ending record number.

3
3

3

try

varNum = CDFgetVarNum (id, “MY_VAR?”)
startRec = 10
endRec =20

status = CDFdeleterVarRecordsRenumber (id, varNum, startRec, endRec)

catch ex as Exception

end try

4.3.12 CDFdeletezVar

integer CDFdeletezVar(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer) ¢ in -- zVariable identifier.
CDFdeletezVar deletes the specified zVariable from a CDF.

The arguments to CDFdeletezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number to be deleted.

82

4.3.12.1. Example(s)

The following example deletes the zVariable named MY_ VAR in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim varNum as integer ¢ zVariable number.
try

varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFdeletezVar (id, varNum)

catch ex as Exception

end try

4.3.13 CDFdeletezVarRecords

integer CDFdeletezVarRecords(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- zVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeletezVarRecords deletes a range of data records from the specified zVariable in a CDF. If this is a variable with
sparse records, the remaining records after deletion will not be renumbered.
The arguments to CDFdeletezVarRecords are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The identifier of the zVariable.
startRec ~ The starting record number to delete.

endRec The ending record number to delete.

83

4.3.13.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim varNum as integer zVariable number.

Dim startRec as integer Starting record number.
Dim endRec as integer Ending record number.

3
3

3

try

varNum = CDFgetVarNum (id, “MY_VAR?”)
startRec = 10
endRec =20

status = CDFdeletezVarRecords (id, varNum, startRec, endRec)

catch ex as Exception

end try

4.3.14 CDFdeletezVarRecordsRenumber

integer CDFdeletezVarRecordsRenumber(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- zVariable identifier.
startRec as integer, in -- Starting record number.
endRec as integer) in -- Ending record number.

CDFdeletezVarRecordsRenumber deletes a range of data records from the specified zVariable in a CDF. If this is a
variable with sparse records, the remaining records after deletion will be renumbered, just like non-sparse variable’s
records.

The arguments to CDFdeletezVarRecordsRenumber are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The identifier of the zVariable.
startRec The starting record number to delete.

endRec The ending record number to delete.

84

4.3.14.1. Example(s)

The following example deletes 11 records (from record numbered 11 to 21) from the zVariable “MY_VAR” in a CDF.
Note: The first record is numbered as 0. If the last record number is 100, then after the deletion, the record will be 89.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim varNum as integer zVariable number.

Dim startRec as integer Starting record number.
Dim endRec as integer Ending record number.

3
3

3

try

varNum = CDFgetVarNum (id, “MY_VAR?”)
startRec = 10
endRec =20

status = CDFdeletezVarRecordsRenumber (id, varNum, startRec, endRec)

catch ex as Exception

end try

4.3.15 CDFgetMaxWrittenRecNums

integer CDFgetMaxWrittenRecNums (¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

rVarsMaxNum as integer, out -- Maximum record number among all rVariables.
zVarsMaxNum as integer) out -- Maximum record number among all zVariables.

CDFgetMaxWrittenRecNums returns the maximum written record number for the rVariables and zVariables in a CDF.
The maximum record number for rVariables or zVariables is one less than the maximum number of records among all
respective variables.

The arguments to CDFgetMaxWrittenRecNums are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

rVarsMaxNum The maximum record number among all rVariables.

zVarsMaxNum The maximum record number among all zVariables.

85

4.3.15.1. Example(s)

The following example returns the maximum written record numbers among all rVariables and zVariables of the CDF.

dim id as long
Dim status as integer

¢ CDF identifier.
¢ Returned status code.

Dim rVarsMaxNum as integer ¢ Maximum record number among all rVariables.
Dim zVarsMaxNum as integer ¢ Maximum record number among all zVariables.
try

status = CDFgetMaxWrittenRecNums (id, rVarsMaxNum, zVarsMaxNum)

catch ex as Exception

end try

4.3.16 CDFgetNumrVars

integer CDFgetNumrVars (

id as long,
numVars as integer)

3

out -- Completion status code.
¢ in-- CDF identifier.
¢ out -- Total number of rVariables.

CDFgetNumrVars returns the total number of rVariables in a CDF.

The arguments to CDFgetNumrVars are defined as follows:

id

numVars

4.3.16.1. Example(s)

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of rVariables.

The following example returns the total number of rVariables in a CDF.

dim status as integer
dim id as long

¢ Returned status code.
¢ CDF identifier.

Dim numVars as integer ¢ Number of zVariables.

86

try
status = CDFgetNumrVars (id, numVars)

catch ex as Exception

end try

4.3.17 CDFgetNumzVars

3

integer CDFgetNumzVars (out -- Completion status code.

id as long, ¢ in -- CDF identifier.

numVars as integer) ¢ out -- Total number of zVariables.
CDFgetNumzVars returns the total number of zVariables in a CDF.

The arguments to CDFgetNumzVars are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numVars The number of zVariables.

4.3.17.1. Example(s)

The following example returns the total number of zVariables in a CDF.

dim status as integer ¢ Returned status code.
dim id as long ¢ CDF identifier.

Dim numVars as integer ¢ Number of zVariables.
try

status = CDFgetNumzVars (id, numVars)

catch ex as Exception

end try

87

4.3.18 CDFgetrVarAllocRecords

integer CDFgetrVarAllocRecords(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Allocated number of records.

CDFgetrVarAllocRecords returns the number of records allocated for the specified rVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.
The arguments to CDFgetrVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numRecs The number of allocated records.

4.3.18.1. Example(s)

The following example returns the number of allocated records for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.
Dim numRecs as integer ¢ The allocated records.
Dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetrVarAllocRecords (id, varNum, numRecs)

catch ex as Exception

end try

4.3.19 CDFgetrVarBlockingFactor

3

integer CDFgetrVarBlockingFactor(out -- Completion status code.

88

id as long, ¢ in -- CDF identifier.
varNum as integer, ¢ in -- Variable number.
bf as integer) out -- Blocking factor.

3

CDFgetrVarBlockingFactor returns the blocking factor for the specified rVariable in a CDF. Refer to the CDF User’s
Guide for a description of the blocking factor.

The arguments to CDFgetrVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
bf The blocking factor. A value of zero (o) indicates that the default blocking factor will be
used.

4.3.19.1. Example(s)

The following example returns the blocking factor for the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ rVariable number.
Dim bf as integer ¢ The blocking factor.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetrVarBlockingFactor (id, varNum, bf) .
catch ex as Exception

end try

4.3.20 CDFgetrVarCacheSize

integer CDFgetrVarCacheSize(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) out -- Number of cache buffers.

CDFgetrVarCacheSize returns the number of cache buffers being for the specified rVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

89

The arguments to CDFgetrVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numBuffers The number of cache buffers.

4.3.20.1. Example(s)

The following example returns the number of cache buffers for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim numBuffers as integer ¢ The number of cache buffers.
dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetrVarCacheSize (id, varNum, numBuffers)

catch ex as Exception

end try

4.3.21 CDFgetrVarCompression

integer CDFgetrVarCompression(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
compType as integer, out -- Compression type.
cParms as integer(), out -- Compression parameters.
cPct as integer) out -- Compression percentage.

CDFgetrVarCompression returns the compression type/parameters and compression percentage of the specified
rVariable in a CDF. Refer to Section 2.11 for a description of the CDF supported compression types/parameters. The
compression percentage is the result of the compressed size from all variable records divided by its original,
uncompressed variable size.

The arguments to CDFgetrVarCompression are defined as follows:

90

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

compType The compression type.

cParms The compression parameters.

cPct The percentage of the uncompressed size of rVariable’s data values needed to store the

compressed values.

4.3.21.1. Example(s)

The following example returns the compression information for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim compType as integer The compression type.

Dim cParms(1) as integer The compression parameters.
Dim cPct as integer The compression percentage.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFgetrVarCompression (id, varNum, compType, cParms, cPct)

catch ex as Exception

end try

4.3.22 CDFgetrVarData

integer CDFgetrVarData(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

recNum as integer, in -- Record number.

indices as integer(), in -- Dimension indices.

value as TYPE) ¢ out -- Data value.

TYPE -- VB value/string type or object.

CDFgetrVarData returns a data value from the specified indices, the location of the element, in the given record of the
specified rVariable in a CDF.

The arguments to CDFgetrVarData are defined as follows:

91

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

recNum The record number.

indices The dimension indices within the record.
value The data value.

4.3.22.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from rVariable “MY_VAR”,
a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.
Dim recNum as integer The record number.
Dim indices(2) as integer ¢ The dimension indices.
Dim valuel as double, value2 as double ¢ The data values.

3

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
recNum =0
indices(0) =0
indices(1)=0
status = CDFgetrVarData (id, varNum, recNum, indices, valuel)
indices(0) = 1
indices(1) =1
object value2o
status = CDFgetrVarData (id, varNum, recNum, indices, value20)
value2 = value2o0

catch ex as Exception

end try

4.3.23 CDFgetrVarDataType

3

integer CDFgetrVarDataType(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer, ¢ in -- Variable number.

92

dataType as integer)

3

out -- Data type.

CDFgetrVarDataType returns the data type of the specified rVariable in a CDF. Refer to Section 2.6 for a description
of the CDF data types.

The arguments to CDFgetrVarDataType are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

dataType The data type.

4.3.23.1. Example(s)

The following example returns the data type of rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ rVariable number.
Dim dataType as integer ¢ The data type.
dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFgetrVarDataType (id, varNum, dataType)

catch ex as Exception

end try

4.3.24 CDFgetrVarDimVariances

integer CDFgetrVarDimVariances(

out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer,
dimVarys as integer())

in -- Variable number.
out -- Dimension variances.

CDFgetrVarDimVariances returns the dimension variances of the specified rVariable in a CDF. For 0-dimensional
rVariable, this operation is not applicable. The dimension variances are described in section 2.10.

The arguments to CDFgetrVarDimVariances are defined as follows:

93

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

dimVarys The dimension variances.

4.3.24.1. Example(s)

The following example returns the dimension variances of the 2-dimensional rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dimVarys(2) as integer ¢ The dimension variances.
try

status = CDFgetrVarDimVariances (id, CDFgetVarNum (id, “MY_VAR”), dimVarys)

catch ex as Exception

end try

4.3.25 CDFgetrVarlnfo

integer CDFgetrVarInfo(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer, out -- Data type.

numElems as integer, out -- Number of elements.
numDims as integer, out -- Number of dimensions.
dimSizes as integer()) out -- Dimension sizes.

CDFgetrVarlnfo returns the basic information about the specified rVariable in a CDF.
The arguments to CDFgetrVarInfo are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

94

dataType The data type of the variable.

numElems The number of elements for the data type of the variable.
numDims The number of dimensions.
dimSizes The dimension sizes.

4.3.25.1. Example(s)

The following example returns the basic information of rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim dataType as integer ¢ The data type.

Dim numElems as integer ¢ The number of elements.
Dim numDims as integer The number of dimensions.
Dim dimSizes() as integer The dimension sizes.

dim status as integer

3

3

try

status = CDFgetrVarlnfo (id, CDFgetVarNum (id, “MY_VAR?”), dataType, numElems, _
numDims, dimVarys)

catch ex as Exception

end try

4.3.26 CDFgetrVarMaxAllocRecNum

integer CDFgetrVarMaxAllocRecNum(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum allocated record #.
CDFgetrVarMaxAllocRecNum returns the number of records allocated for the specified rVariable in a CDF.

The arguments to CDFgetrVarMaxAllocRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

95

varNum The rVariable number.

maxRec The number of records allocated.

4.3.26.1. Example(s)

The following example returns the maximum allocated record number for the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer.

try
status = CDFgetrVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR?”), maxRec)

catch ex as Exception

end try

4.3.27 CDFgetrVarMaxWrittenRecNum

integer CDFgetrVarMaxWrittenRecNum (¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum written record number.
CDFgetrVarMaxWrittenRecNum returns the maximum record number written for the specified rVariable in a CDF.

The arguments to CDFgetrVarMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

maxRec The maximum written record number.

4.3.27.1. Example(s)

The following example returns the maximum record number written for the rVariable “MY_VAR” in a CDF.

96

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer.

try

status = CDFgetrVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)

catch ex as Exception

end try

4.3.28 CDFgetrVarName

integer CDFgetrVarName(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
varName as string) out -- Variable name.
CDFgetrVarName returns the name of the specified rVariable, by its number, in a CDF.

The arguments to CDFgetrVarName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

varName The name of the variable.

4.3.28.1. Example(s)

The following example returns the name of the rVariable whose variable number is 1.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim varName as string ¢ The name of the variable.
Dim status as integer.

varNum = 1
try

97

status = CDFgetrVarName (id, varNum, varName)

catch ex as Exception

end try

4.3.29 CDFgetrVarNumElements

integer CDFgetrVarNumElements(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
numElems as integer) out -- Number of elements.

CDFgetrVarNumElements returns the number of elements for each data value of the specified rVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).

The arguments to CDFgetrVarNumElements are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numElems The number of elements.

4.3.29.1. Example(s)

The following example returns the number of elements for the data type from rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numElems as integer ¢ The number of elements.
Dim status as integer.

try
status = CDFgetrVarNumElements (id, CDFgetVarNum (id, “MY_VAR?”), numElems) ...

catch ex as Exception

end try

98

4.3.30 CDFgetrVarNumRecsWritten

integer CDFgetrVarNumRecsWritten(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Number of written records.

CDFgetrVarNumRecsWritten returns the number of records written for the specified rVariable in a CDF. This number
may not correspond to the maximum record written if the rVariable has sparse records.
The arguments to CDFgetrVarNumRecsWritten are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numRecs The number of written records.

4.3.30.1. Example(s)

The following example returns the number of written records from rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numRecs as integer ¢ The number of written records.
Dim status as integer.

try
status = CDFgetrVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception

end try

4.3.31 CDFgetrVarPadValue

integer CDFgetrVarPadValue(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

value as TYPE) ¢ out -- Pad value.

TYPE -- VB value/string type or object.

99

CDFgetrVarPadValue returns the pad value of the specified rVariable in a CDF. If a pad value has not been explicitly
specified for the rVariable through CDFsetrVarPadValue, the informational status code
NO_PADVALUE_SPECIFIED will be returned. Since a variable’s pad value is an optional, no exception is thrown
while trying to get its value if its value is not set. It’s recommended to check the returned status after the method is
called.

The arguments to CDFgetrVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

value The pad value.

4.3.31.1. Example(s)

The following example returns the pad value from rVariable “MY_VAR”, a CDF_INT4 type variable, in a CDF.

dim id as long ¢ CDF identifier.
Dim padValue as integer ¢ The pad value.
Dim status as integer.

try
object padValueo
status = CDFgetrVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValueo)
if status <> NO _PADVALUE SPECIFIED then

. padValue = Ctype(padValueo, integer)
end if

catch ex as Exception

end try

4.3.32 CDFgetrVarRecordData

integer CDFgetrVarRecordData(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer, in -- Variable number.
dim recNum as integer, in -- Record number.
buffer as TYPE) ¢ out -- Record data.
¢ TYPE -- VB value/string type (likely
an array) or object.

100

CDFgetrVarRecordData returns an entire record at a given record number for the specified rVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.

The arguments to CDFgetrVarRecordData are defined as follows:

id

varNum

recNum

buffer

4.3.32.1. Example(s)

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The rVariable number.
The record number.

The buffer holding the entire record data.

The following example will read two full records (record numbers 2 and 5) from rVariable “MY_VAR?”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long
Dim varNum

Dim bufferl(,) as integer

¢ CDF identifier.
¢ rVariable number.
The data holding buffer — pre-allocation.

3

Dim buffer2(,) as integer ¢ The data holding buffer — API allocation.

Dim status as integer.

try

varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetrVarRecordData (id, varNum, 2, bufferl)
dim buffer2o as object

status = CDFgetrVarRecordData (id, varNum, 5, buffer2o)

buffer2 = buffer2o

catch ex as Exception

end try

4.3.33 CDFgetrVarRecVariance

integer CDFgetrVarRecVariance(

id as long,
varNum as integer,
recVary as integer)

out -- Completion status code.
¢ in -- CDF identifier.

in -- Variable number.

out -- Record variance.

101

CDFgetrVarRecVariance returns the record variance of the specified rVariable in a CDF. The record variances are
described in Section 2.10.

The arguments to CDFgetrVarRecVariance are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

recVary The record variance.

4.3.33.1. Example(s)

The following example returns the record variance for the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim recVary as integer ¢ The record variance.
.Dim status as integer

try
status = CDFgetrVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), recVary) ...

catch ex as Exception

end try

4.3.34 CDFgetrVarReservePercent

integer CDFgetrVarReservePercent(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
percent as integer) out -- Reserve percentage.

CDFgetrVarReservePercent returns the compression reserve percentage being used for the specified rVariable in a
CDF. This operation only applies to compressed rVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFgetrVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

102

percent The reserve percentage.

4.3.34.1. Example(s)

The following example returns the compression reserve percentage from the compressed rVariable “MY_VAR” in a
CDF.

dim id as long ¢ CDF identifier.
Dim percent as integer ¢ The compression reserve percentage.
dim status as integer

try
status = CDFgetrVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent)

catch ex as Exception

end try

4.3.35 CDFgetrVarsDimSizes

3

integer CDFgetrVarsDimSizes(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
dimSizes as integer()) ¢ out -- Dimension sizes.

CDFgetrVarsDimSizes returns the size of each dimension for the rVariables in a CDF. (all rVariables have the same
dimensional sizes.) For 0-dimensional rVariables, this operation is not applicable.

The arguments to CDFgetrVarsDimSizes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

dimSizes The dimension sizes. Each element of dimSizes receives the corresponding dimension size.

4.3.35.1. Example(s)

The following example returns the dimension sizes for rVariables in a CDF.

103

dim id as long ¢ CDF identifier.
dim dimSizes() as integer ¢ Dimensional sizes.
Dim status as integer

try

status = CDFgetrVarsDimSizes (id, dimSizes)

catch ex as Exception

end try

4.3.36 CDFgetrVarSeqData

integer CDFgetrVarSeqData(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

value as TYPE) ¢ out -- Data value.

TYPE -- VB value/string type or object.

CDFgetrVarSeqData reads one value from the specified rVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the rVariable. Use CDFsetrVarSeqPos method to set the current
sequential value (position).

The arguments to CDFgetrVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number from which to read data.

value The buffer to store the value.

4.3.36.1. Example(s)

The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional
rVariable whose data type is CDF_INT4) in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ The variable number from which to read data
Dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.

Dim recNum as integer ¢ The record number.

Dim status as integer.

3

104

recNum = 2
indices(0) =0
indices(1)=0
try

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
status = CDFgetrVarSeqData (id, varNum, valuel)

object value2o

status = CDFgetrVarSeqData (id, varNum, value20)
value2 = value2o

catch ex as Exception

end try

4.3.37 CDFgetrVarSeqPos

integer CDFgetrVarSeqPos(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, out -- Record number.

indices as integer()) out -- Indices in a record.

CDFgetrVarSeqPos returns the current sequential value (position) for sequential access for the specified rVariable in a
CDF. Note that a current sequential value is maintained for each rVariable individually. Use CDFsetrVarSeqPos
method to set the current sequential value.

The arguments to CDFgetrVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
recNum The rVariable record number.
indices The dimension indices. Each element of indices receives the corresponding dimension

index. For O-dimensional rVariable, this argument is ignored, but must be presented.

4.3.37.1. Example(s)

The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional rVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The record number.

105

Dim indices() as integer ¢ The indices.
dim status as integer

try
status = CDFgetrVarSeqPos (id, CDFgetVarNum (id, “MY_VAR”), recNum, indices)
catch ex as Exception

end try

4.3.38 CDFgetrVarsMaxWrittenRecNum

integer CDFgetrVarsMaxWrittenRecNum(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
recNum as integer) ¢ out -- Maximum record number.

CDFgetrVarsMaxWrittenRecNum returns the maximum record number among all of the rVariables in a CDF. Note
that this is not the number of written records but rather the maximum written record number (that is one less than the
number of records). A value of negative one (-1) indicates that rVariables contain no records. The maximum record
number for an individual rVariable may be acquired using the CDFgetrVarMax WrittenRecNum method call.

Suppose there are three rVariables in a CDF:Varl, Var2, and Var3. If Varl contains 15 records, Var2 contains 10
records, and Var3 contains 95 records, then the value returned from CDFgetrVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetrVarsMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

recNum The maximum written record number.

4.3.38.1. Example(s)

The following example returns the maximum record number for all of the rVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The maximum record number.
Dim status as integer.
try
status = CDFgetrVarsMaxWrittenRecNum (id, recNum)

catch ex as Exception

106

end try

4.3.39 CDFgetrVarsNumDims

integer CDFgetrVarsNumDims(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
numDims as integer) ¢ out -- Number of dimensions.
CDFgetrVarsNumDims returns the number of dimensions (dimensionality) for the rVariables in a CDF.

The arguments to CDFgetrVarsNumDims are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numDims The number of dimensions.

4.3.39.1. Example(s)

The following example returns the number of dimensions for rVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim numDims as integer ¢ The dimensionality of the variable.
Dim status as integer.

try
status = CDFgetrVarsNumDims (id, numDims)

catch ex as Exception

end try

4.3.40 CDFgetrVarSparseRecords

integer CDFgetrVarSparseRecords(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) out -- The sparse records type.

107

CDFgetrVarSparseRecords returns the sparse records type of the rVariable in a CDF. Refer to Section 2.12.1 for the
description of sparse records.

The arguments to CDFgetrVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The variable number.

sRecordsType The sparse records type.

4.3.40.1. Example(s)

The following example returns the sparse records type of the rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.

try
status = CDFgetrVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR?”), sRecordsType) ...

catch ex as Exception

end try

4.3.41 CDFgetVarNum 3

integer CDFgetVarNum(¢ out -- Variable number.
id as long, ¢ in -- CDF identifier.
varName as string) ‘¢ in -- Variable name.

CDFgetVarNum returns the variable number for the given variable name (rVariable or zVariable). If the variable is
found, CDFgetVarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs
(e.g., the variable does not exist in the CDF), an error code (of type int) is returned, and an exception is thrown. Error
codes are less than zero (0). The returned variable number should be used in the functions of the same variable type,
rVariable or zVariable. If it is an rVariable, functions dealing with rVariables should be used. Similarly, functions for
zVariables should be used for zVariables.

The arguments to CDFgetVarNum are defined as follows:

8 Since no two variables, either rVariable or zVariable, can have the same name, this function now returns the variable
number for the given rVariable or zVariable name (if the variable name exists in a CDF).

108

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.

varName The name of the variable to search. This may be at most CDF_ VAR NAME LEN256

characters. Variable names are case-sensitive.

CDFgetVarNum may be used as an embedded function call where an rVariable or zVariable number is needed.

4.3.41.1. Example(s)

In the following example CDFgetVarNum is used as an embedded function call when inquiring about a zVariable.

dim id as longid

Dim status as integer

Dim varName as string

Dim dataType as integer

Dim numElements as integer
Dim numDims as integer

Dim dimSizes() as integer
Dim recVariance as integer
Dim dimVariances() as integer

try

CDF identifier.

Returned status code.

Variable name.

Data type of the zVariable.

Number of elements (of the data type).
Number of dimensions.

Dimension sizes.

Record variance.

Dimension variances.

status = CDFinquirezVar (id, CDFgetVarNum (id,"LATITUDE"), varName, dataType, _
numElements, numDims, dimSizes , recVariance, dimVariances)

catch ex as Exception

end try

In this example the zVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFinquirezVar as a zVariable
number would have resulted in CDFinquirezVar also returning an error code. Also note that the name written into
varName is already known (LATITUDE). In some cases the zVariable names will be unknown - CDFinquirezVar
would be used to determine them. CDFinquirezVar is described in Section 4.3.66.

4.3.42 CDFgetzVarAllocRecords

integer CDFgetzVarAllocRecords(
id as long,

varNum as integer,

numRecs as integer)

109

out -- Completion status code.

¢ in-- CDF identifier.

in -- Variable number.

out -- Allocated number of records.

CDFgetzVarAllocRecords returns the number of records allocated for the specified zVariable in a CDF. Refer to the
CDF User’s Guide for a description of allocating variable records in a single-file CDF.

The arguments to CDFgetzVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of allocated records.

4.3.42.1. Example(s)

The following example returns the number of allocated records for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim numRecs as integer ¢ The allocated records.

Dim status as integer.
try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetzVarAllocRecords (id, varNum, numRecs)

catch ex as Exception

end try

4.3.43 CDFgetzVarBlockingFactor

integer CDFgetzVarBlockingFactor(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) out -- Blocking factor.

CDFgetzVarBlockingFactor returns the blocking factor for the specified zVariable in a CDF. Refer to the CDF User’s
Guide for a description of the blocking factor.
The arguments to CDFgetzVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

110

varNum The zVariable number.

bf The blocking factor. A value of zero (o) indicates that the default blocking factor will be
used.

4.3.43.1. Example(s)

The following example returns the blocking factor for the zVariable “MY_VAR” in a CDF.

dim id as long ’ ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim bf as integer ¢ The blocking factor.

dim status as integer
try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetzVarBlockingFactor (id, varNum, bf) .
catch ex as Exception

end try

4.3.44 CDFgetzVarCacheSize

integer CDFgetzVarCacheSize(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) out -- Number of cache

CDFgetzVarCacheSize returns the number of cache buffers being for the specified zVariable in a CDF. This operation
is not applicable to a single-file CDF. Refer to the CDF User’s Guide for a description of caching scheme used by the
CDF library.

The arguments to CDFgetzVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numBuffers The number of cache buffers.

111

4.3.44.1. Example(s)

The following example returns the number of cache buffers for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ zVariable number.

Dim numBuffers as integer ¢ The number of cache buffers.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR?”)

status = CDFgetzVarCacheSize (id, varNum, numBuffers)

catch ex as Exception

end try

4.3.45 CDFgetzVarCompression

integer CDFgetzVarCompression(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
compType as integer, out -- Compression type.
cParms as integer(), out -- Compression parameters.
cPct as integer) out -- Compression percentage.

CDFgetzVarCompression returns the compression type/parameters and compression percentage of the specified
zVariable in a CDF. Refer to Section 2.11 for a description of the CDF supported compression types/parameters. The
compression percentage is the result of the compressed size from all variable records divided by its original,
uncompressed variable size.

The arguments to CDFgetzVarCompression are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

compType The compression type.

cParms The compression parameters.

cPct The percentage of the uncompressed size of zVariable’s data values needed to store the

compressed values.

112

4.3.45.1. Example(s)

The following example returns the compression information for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ zVariable number.

Dim compType as integer ¢ The compression type.

Dim cParms() as integer The compression parameters.
Dim cPct as integer The compression percentage.
Dim status as integer.

3

3

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFgetzVarCompression (id, varNum, compType, cParms, cPct)

catch ex as Exception

end try

4.3.46 CDFgetzVarData

integer CDFgetzVarData(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

dim recNum as integer, in -- Record number.

indices as integer(), in -- Dimension indices.

value as TYPE) ¢ out -- Data value.

TYPE -- VB value/string type or object.

CDFgetzVarData returns a data value from the specified indices, the location of the element, in the given record of the
specified zVariable in a CDF.
The arguments to CDFgetzVarData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recNum The record number.

indices The dimension indices within the record.
value The data value.

113

4.3.46.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from zVariable
“MY_VAR?”, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer zVariable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
recNum =0
indices(0) =0
indices(1)=0
status = CDFgetzVarData (id, varNum, recNum, indices, valuel)
indices(0) = 1
indices(1) =1
object value2o
status = CDFgetzVarData (id, varNum, recNum, indices, value20)
value2 = value2o0

catch ex as Exception

end try

4.3.47 CDFgetzVarDataType

3

integer CDFgetzVarDataType(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer) out -- Data type.

3

CDFgetzVarDataType returns the data type of the specified zVariable in a CDF. Refer to Section 2.6 for a description
of the CDF data types.

The arguments to CDFgetzVarDataType are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

114

varNum The zVariable number.

dataType The data type.

4.3.47.1. Example(s)

The following example returns the data type of zVariable “MY_VAR” ina CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim dataType as integer ¢ The data type.

Dim status as integer.
try
varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFgetzVarDataType (id, varNum, dataType)

catch ex as Exception

end try

4.3.48 CDFgetzVarDimSizes

integer CDFgetzVarDimSizes(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
dimSizes as integer) out -- Dimension sizes.

CDFgetzVarDimSizes returns the size of each dimension for the specified zVariable in a CDF. For 0-dimensional
zVariables, this operation is not applicable.
The arguments to CDFgetzVarDimSizes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number

dimSizes The dimension sizes. Each element of dimSizes receives the corresponding dimension size.

115

4.3.48.1. Example(s)

The following example returns the dimension sizes for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim dimSizes() as integer ¢ Dimensional sizes.
Dim status as integer

try

status = CDFgetzVarDimSizes (id, CDFgetVarNum (id, “MY_VAR”), dimSizes)

catch ex as Exception

end try

4.3.49 CDFgetzVarDimVariances

integer CDFgetzVarDimVariances(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) out -- Dimension variances.

CDFgetzVarDimVariances returns the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in section 2.10.

The arguments to CDFgetzVarDimVariances are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dimVarys The dimension variances.

4.3.49.1. Example(s)

The following example returns the dimension variances of the 2-dimensional zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dimVarys() as integer ¢ The dimension variances.

116

Dim status as integer.

try

status = CDFgetzVarDimVariances (id, CDFgetVarNum (id, “MY_VAR?”), dimVarys)

catch ex as Exception

end try

4.3.50 CDFgetzVarlnfo

integer CDFgetzVarlnfo(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
dataType as integer, out -- Data type.

numElems as integer, out -- Number of elements.
numDims as integer, out -- Number of dimensions.
dimSizes as integer()) out -- Dimension sizes.

CDFgetzVarInfo returns the basic information about the specified zVariable in a CDF.

The arguments to CDFgetzVarlnfo are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dataType The data type of the variable.

numElems The number of elements for the data type of the variable.
numDims The number of dimensions.

dimSizes The dimension sizes.

4.3.50.1. Example(s)

The following example returns the basic information of zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dataType as integer ¢ The data type.

117

Dim numElems as integer ¢ The number of elements.
Dim numDims as integer ¢ The number of dimensions.
Dim dimSizes() as integer ¢ The dimension sizes.

Dim status as integer.

try

status = CDFgetzVarlnfo (id, CDFgetVarNum (id, “MY_VAR?”), dataType, numElems, _
numDims, dimVarys)

catch ex as Exception

end try

4.3.51 CDFgetzVarMaxAllocRecNum

integer CDFgetzVarMaxAllocRecNum(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum allocated record #.
CDFgetzVarMaxAllocRecNum returns the number of records allocated for the specified zVariable in a CDF.

The arguments to CDFgetzVarMaxAllocRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

maxRec The number of records allocated.

4.3.51.1. Example(s)

The following example returns the maximum allocated record number for the zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
dim status as integer

try

status = CDFgetzVarMaxAllocRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)

118

catch ex as Exception

end try

4.3.52 CDFgetzVarMaxWrittenRecNum

integer CDFgetzVarMaxWrittenRecNum (¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

maxRec as integer) out -- Maximum written record number.
CDFgetzVarMax WrittenRecNum returns the maximum record number written for the specified zVariable in a CDF.

The arguments to CDFgetzVarMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

maxRec The maximum written record number.

4.3.52.1. Example(s)

The following example returns the maximum record number written for the zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim maxRec as integer ¢ The maximum record number.
Dim status as integer

try

status = CDFgetzVarMaxWrittenRecNum (id, CDFgetVarNum (id, “MY_VAR”), maxRec)

catch ex as Exception

end try

119

4.3.53 CDFgetzVarName

integer CDFgetzVarName(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
varName as string) out -- Variable name.

CDFgetzVarName returns the name of the specified zVariable, by its number, in a CDF.

The arguments to CDFgetzVarName are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.
varNum The zVariable number.

varName The name of the variable.

4.3.53.1. Example(s)

The following example returns the name of the zVariable whose variable number is 1.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.
Dim varName as string ¢ The name of the variable.

Dim status as integer.

varNum = 1
try

status = CDFgetzVarName (id, varNum, varName)

catch ex as Exception

end try

4.3.54 CDFgetzVarNumDims

integer CDFgetzVarNumDims(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
numDims as integer) out -- Number of dimensions.

120

CDFgetzVarNumDims returns the number of dimensions (dimensionality) for the specified zVariable in a CDF.
The arguments to CDFgetzVarNumDims are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number

numDims The number of dimensions.

4.3.54.1. Example(s)

The following example returns the number of dimensions for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numDims as integer ¢ The dimensionality of the variable.
Dim status as integer.

try

status = CDFgetzVarNumDims (id, CDFgetVarNum (id, “MY_VAR”), numDims)

catch ex as Exception

end try

4.3.55 CDFgetzVarNumElements

integer CDFgetzVarNumElements(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
numElems as integer) out -- Number of elements.

CDFgetzVarNumElements returns the number of elements for each data value of the specified zVariable in a CDF. For
character data type (CDF_CHAR and CDF_UCHAR), the number of elements is the number of characters in the string.
For other data types, the number of elements will always be one (1).

The arguments to CDFgetzVarNumElements are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

121

numElems The number of elements.

4.3.55.1. Example(s)

The following example returns the number of elements for the data type from zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim numElems as integer ¢ The number of elements.
Dim status as integer.

try
status = CDFgetzVarNumElements (id, CDFgetVarNum (id, “MY_VAR?”), numElems) ...

catch ex as Exception

end try

4.3.56 CDFgetzVarNumRecsWritten

integer CDFgetzVarNumRecsWritten(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

numRecs as integer) out -- Number of written records.

CDFgetzVarNumRecsWritten returns the number of records written for the specified zVariable in a CDF. This number
may not correspond to the maximum record written if the zVariable has sparse records.

The arguments to CDFgetzVarNumRecsWritten are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of written records.

4.3.56.1. Example(s)

The following example returns the number of written records from zVariable “MY_VAR” in a CDF.

122

dim id as long ¢ CDF identifier.
Dim numRecs as integer ¢ The number of written records.
Dim status as integer.

try
status = CDFgetzVarNumRecsWritten (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception

end try

4.3.57 CDFgetzVarPadValue

integer CDFgetzVarPadValue(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

value as TYPE) ¢ out -- Pad value.

TYPE -- VB value/string type or object

CDFgetzVarPadValue returns the pad value of the specified zVariable in a CDF. If a pad value has not been explicitly
specified for the zVariable through CDFsetzVarPadValue, the informational status code
NO_PADVALUE_SPECIFIED will be returned. Since a variable’s pad value is an optional, no exception is thrown
while trying to get its value if its value is not set. It’s recommended to check the returned status after the method is
called.

The arguments to CDFgetzVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The pad value.

4.3.57.1. Example(s)

The following example returns the pad value from zVariable “MY_VAR?”, a CDF_INT4 type variable, in a CDF.

dim id as long ¢ CDF identifier.
Dim padValue as integer ¢ The pad value.
Dim status as integer.

123

try

dim padValueo as object
status = CDFgetzVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValueo)
if status < NO_PADVALUE SPECIFIED then
padValue = Ctype(padValueo, integer)
end if

catch ex as Exception

end try

4.3.58 CDFgetzVarRecordData

integer CDFgetzVarRecordData(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer, in -- Variable number.
dim recNum as integer, in -- Record number.
buffer as TYPE) ¢ out -- Record data.
¢ TYPE -- VB value/string type (likely an
array) or object

CDFgetzVarRecordData returns an entire record at a given record number for the specified zVariable in a CDF. The
buffer should be large enough to hold the entire data values form the variable.
The arguments to CDFgetzVarRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The record number.
buffer The buffer holding the entire record data.

4.3.58.1. Example(s)

The following example will read two full records (record numbers 2 and 5) from zVariable “MY_VAR?”, a 2-dimension
(2 by 3), CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ zVariable number.

124

Dim buffer1(2,3) as integer ¢ The data holding buffer — pre-allocation.
Dim buffer2 as object ¢ The data holding buffer — API allocation.

Dim status as integer.
try
varNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFgetzVarRecordData (id,:farNum, 2, bufferl)
status = CDFgetzVarRecordData (id, varNum, 5, buffer2)

catch ex as Exception

end try

4.3.59 CDFgetzVarRecVariance

integer CDFgetzVarRecVariance(
id as long,

varNum as integer,

recVary as integer)

CDFgetzVarRecVariance returns the record variance of the specified zVariable
described in Section 2.10.

The arguments to CDFgetzVarRecVariance are defined as follows:

out -- Completion status code.
in -- CDF identifier.

in -- Variable number.

out -- Record variance.

in a CDF. The record variances are

id The identifier of the current CDF. This identifier must have been initialized by a call to

CDFcreate (or CDFcreateCDF) or CDFopenCDF.
varNum The zVariable number.

recVary The record variance.

4.3.59.1. Example(s)

The following example returns the record variance for the zVariable “MY_VAR” in a CDF.

dim id as long
Dim recVary as integer
dim status as integer

try

¢ CDF identifier.
¢ The record variance.

status = CDFgetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), recVary) ...

125

catch ex as Exception

end try

4.3.60 CDFgetzVarReservePercent

integer CDFgetzVarReservePercent(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
percent as integer) out -- Reserve percentage.

CDFgetzVarReservePercent returns the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFgetzVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

percent The reserve percentage.

4.3.60.1. Example(s)

The following example returns the compression reserve percentage from the compressed zVariable “MY_VAR” in a
CDF.

dim id as long ¢ CDF identifier.
Dim percent as integer ¢ The compression reserve percentage.
Dim status as integer.
try
status = CDFgetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent)

catch ex as Exception

end try

126

4.3.61 CDFgetzVarSeqData

integer CDFgetzVarSeqData(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

value as TYPE) ¢ out -- Data value.

TYPE -- VB value/string type or object

CDFgetzVarSeqData reads one value from the specified zVariable in a CDF at the current sequential value (position).
After the read, the current sequential value is automatically incremented to the next value. An error is returned if the
current sequential value is past the last record of the zVariable. Use CDFsetzVarSeqPos method to set the current
sequential value (position).

The arguments to CDFgetzVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number from which to read data.

value The buffer to store the value.

4.3.61.1. Example(s)

The following example will read the first two data values from the beginning of record number 2 (from a 2-dimensional
zVariable whose data type is CDF_INT4) in a CDF.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ The variable number from which to read data
Dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.

Dim recNum as integer ¢ The record number.

Dim status as integer.

3

recNum = 2
indices(0) =0
indices(1)=0
try

status = CDFsetzVarSeqPos (id, varNum, recNum, indices)
status = CDFgetzVarSeqData (id, varNum, valuel)

dim value2o as object

status = CDFgetzVarSeqData (id, varNum, value20)
value2 = value2o

catch ex as Exception

end try

127

4.3.62 CDFgetzVarSeqPos

integer CDFgetzVarSeqPos(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, out -- Record number.

indices as integer()) out -- Indices in a record.

CDFgetzVarSeqPos returns the current sequential value (position) for sequential access for the specified zVariable in a
CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFsetzVarSeqPos
method to set the current sequential value.

The arguments to CDFgetzVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The zVariable record number.
indices The dimension indices. Each element of indices receives the corresponding dimension

index. For 0-dimensional zVariable, this argument is ignored, but must be presented.

4.3.62.1. Example(s)

The following example returns the location for the current sequential value (position), the record number and indices
within it, from a 2-dimensional zVariable named MY VAR in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The record number.
Dim indices() as integer ¢ The indices.

Dim status as integer.
try

“s.t.atus = CDFgetzVarSeqPos (id, CDFgetVarNum (id, “MY_VAR”), recNum, indices)
'c.z'nch ex as Exception

end try

4.3.63 CDFgetzVarsMaxWrittenRecNum

128

integer CDFgetzVarsMaxWrittenRecNum(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
recNum as integer) ¢ out -- Maximum record number.

CDFgetzVarsMaxWrittenRecNum returns the maximum record number among all of the zVariables in a CDF. Note
that this is not the number of written records but rather the maximum written record number (that is one less than the
number of records). A value of negative one (-1) indicates that zVariables contain no records. The maximum record
number for an individual zZVariable may be acquired using the CDFgetzVarMaxWrittenRecNum method call.

Suppose there are three zVariables in a CDF:Varl, Var2, and Var3. If Varl contains 15 records, Var2 contains 10
records, and Var3 contains 95 records, then the value returned from CDFgetzVarsMaxWrittenRecNum would be 95.

The arguments to CDFgetzVarsMaxWrittenRecNum are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

recNum The maximum written record number.

4.3.63.1. Example(s)

The following example returns the maximum record number for all of the zVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim recNum as integer ¢ The maximum record number.
dim status as integer

try
status = CDFgetzVarsMaxWrittenRecNum (id, recNum)

catch ex as Exception

end try

4.3.64 CDFgetzVarSparseRecords

integer CDFgetzVarSparseRecords(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) out -- The sparse records type.

CDFgetzVarSparseRecords returns the sparse records type of the zVariable in a CDF. Refer to Section 2.12.1 for the
description of sparse records.

129

The arguments to CDFgetzVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The variable number.

sRecordsType The sparse records type.

4.3.64.1. Example(s)

The following example returns the sparse records type of the zVariable “MY_VAR” in a CDF.

dim id as long
Dim sRecordsType as integer
dim status as integer

try

¢ CDF identifier.
¢ The sparse records type.

status = CDFgetzVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR?”), sRecordsType) ...

catch ex as Exception

end try

4.3.65 CDFhyperGetrVarData

integer CDFhyperGetrVarData(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, ¢ in -- rVariable number.

recStart as integer, ¢ in -- Starting record number.

recCount as integer, ¢ in -- Number of records.

recInterval as integer, ¢ in -- Reading interval between records.

o s

indices as integer(), in--

Dimension indices of starting value.

counts as integer(), ‘¢ in -- Number of values along each dimension.
intervals as integer(), ‘ in -- Reading intervals along each dimension.
buffer as TYPE) ¢ out -- Buffer of values.

TYPE -- VB value/string type (likely an array)

or object

CDFhyperGetrVarData is used to read one or more values for the specified rVariable. It is important to know the
variable majority of the CDF before using this method because the values placed into the data buffer will be in that
majority. CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts

chapter in the CDF User's Guide describes the variable majorities.

130

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperGetrVarData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number from which to read data. This number may be determined with a call to
CDFgetVarNum.

recStart The record number at which to start reading.

recCount The number of records to read.

recInterval The reading interval between records (e.g., an interval of 2 means read every other record).

indices The dimension indices (within each record) at which to start reading. Each element of indices

specifies the corresponding dimension index. For 0O-dimensional rVariable, this argument is
ignored (but must be present).

counts The number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional rVariable, this argument is ignored (but must
be present).

intervals For each dimension, the dimension interval between reading (e.g., an interval of 2 means read
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional rVariable, this argument is ignored (but must be present).

buffer The data holding buffer for the read values. The majority of the values in this buffer will be the
same as that of the CDF. This buffer must be large to hold the values. CDFinquirerVar can be
used to determine the rVariable's data type and number of elements (of that data type) at each
value. If a dimensional array of strings is expected, then use object type.

4.3.65.1. Example(s)

The following example will read 3 records of data, starting at record number 13 (14" record), from a rVariable named
Temperature The variable is a 3-dimensional array with sizes (180,91,10) and the CDF’s variable majority is
ROW_MAIJOR. The record variance is VARY, the dimension variances are (VARY,VARY,VARY), and the data type
is CDF_REAL4. This example is similar to the CDFgetrVarData example except that it uses a single call to
CDFhyperGetrVarData (rather than numerous calls to. CDFgetrVarData).

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim tmp(,,,) as single Temperature values.

Dim varN as integer rVariable number.

Dim recStart as integer = 13 Start record number.

Dim recCount as integer = 3 Number of records to read

Dim reclnterval as integer = 1 Record interval — read every record

131

Dim indices() as integer = {0,0,0} ¢ Dimension indices.

Dim counts() as integer = {180,91,10} ¢ Dimension counts.
Dim intervals() as integer = {1,1,1} ¢ Dimension intervals — read all
try
status = CDFhyperGetrVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals,
tmp)

catch ex as Exception

end try
Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared float
tmp(10,91,180,3) for proper indexing.

4.3.66 CDFhyperGetzVarData

integer CDFhyperGetzVarData(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- zVariable number.

recStart as integer, in -- Starting record number.

recCount as integer, in -- Number of records.

recInterval as integer, in -- Reading interval between records.
indices as integer(), in -- Dimension indices of starting value.

counts as integer(), ‘¢ in -- Number of values along each dimension.
intervals as integer(), ¢ in -- Reading intervals along each dimension.
buffer as TYPE) ¢ out -- Buffer of values.
‘ TYPE -- VB value/string type (likely an array)
¢ or object.

CDFhyperGetzVarData is used to read one or more values for the specified zVariable. It is important to know the
variable majority of the CDF before using this method because the values placed into the data buffer will be in that
majority. CDFinquireCDF can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to read the first 5 records, the starting record number
(recStart), the number of records to read (recCount), and the record interval (recInterval) should be 0, 5, and 1,
respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and intervals
for scalar variables.

The arguments to CDFhyperGetzVarData are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number from which to read data. This number may be determined with a call to
CDFgetVarNum.
recStart The record number at which to start reading.

132

recCount

recInterval

indices

counts

intervals

buffer

The number of records to read.
The reading interval between records (e.g., an interval of 2 means read every other record).

The dimension indices (within each record) at which to start reading. Each element of indices
specifies the corresponding dimension index. For 0-dimensional zVariable, this argument is
ignored (but must be present).

The number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional zVariable, this argument is ignored (but
must be present).

For each dimension, the dimension interval between reading (e.g., an interval of 2 means read
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional zVariable, this argument is ignored (but must be present).

The data holding buffer for the read values. The majority of the values in this buffer will be the
same as that of the CDF. This buffer must be large to hold the values. CDFinquirezVar can be
used to determine the zVariable's data type and number of elements (of that data type) at each
value. If a dimensional array of strings is expected, then use object type.

4.3.66.1. Example(s)

The following example will read 3 records of data, starting at record number 13 (14" record), from a zVariable named
Temperature The variable is a 3-dimensional array with sizes (180,91,10) and the CDF’s variable majority is
ROW_MAIJOR. The record variance is VARY, the dimension variances are {VARY,VARY,VARY}, and the data
type is CDF_REAL4. This example is similar to the CDFgetzVarData example except that it uses a single call to
CDFhyperGetzVarData (rather than numerous calls to. CDFgetzVarData).

aim id as long

Dim status as integer

Dim tmp(,,,) as single

Dim varN as integer

Dim recStart as integer = 13
Dim recCount as integer = 3
Dim reclnterval as integer = 1
Dim indices() as integer = {0,0,0}

¢ CDF identifier.

Returned status code.

Temperature values.

zVariable number.

Start record number.

Number of records to read

Record interval — read every record
Dimension indices.

Dim counts() as integer = {180,91,10} ¢ Dimension counts.

Dim intervals() as integer = {1,1,1}

try

Dimension intervals — read all

varN = CDFgetVarNum (id, "Temperature")

status = CDFhyperGetzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals,

tmp)

catch ex as Exception

133

end try

Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared float
tmp(10,91,180,3) for proper indexing.

4.3.67 CDFhyperPutrVarData

integer CDFhyperPutrVarData(¢ out -- Completion status code.

id as long,

varNum as integer,
recStart as integer,
recCount as integer,
recInterval as integer,
indices as integer(),
counts as integer(),
intervals as integer(),
buffer as TYPE)

¢ in-- CDF identifier.
in -- rVariable number.
¢ in -- Starting record number.

in -- Number of records.

in -- Writing interval between records.

in -- Dimension indices of starting value.

in -- Number of values along each dimension.
¢ in -- Writing intervals along each dimension.
in -- Buffer of values.

TYPE -- VB value/string type (likely an array)

CDFhyperPutrVarData is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this method because the values in the data buffer will

be written using that

majority. CDFinquireCDF can be used to determine the default variable majority of a CDF

distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10" and 11" record), the starting
record number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2,
and 1, respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and
intervals for scalar variables.

The arguments to CDFhyperPutrVarData are defined as follows:

id

varNum

recStart

recCount

recInterval

indices

counts

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

The rVariable number to which write data. This number may be determined with a call to
CDFgetVarNum.

The record number at which to start writing.

The number of records to write.

The interval between records for writing (e.g., an interval of 2 means write every other record).
The indices (within each record) at which to start writing. Each element of indices specifies the
corresponding dimension index. For 0-dimensional rVariable this argument is ignored (but must
be present).

The number of values along each dimension to write. Each element of counts specifies the

corresponding dimension count. For 0-dimensional rVariable this argument is ignored (but must
be present).

134

intervals For each dimension, the interval between values for writing (e.g., an interval of 2 means write
every other value). Each element of intervals specifies the corresponding dimension interval.
For 0-dimensional rVariable this argument is ignored (but must be present).

buffer The data holding buffer of values to write. The majority of the values in this buffer must be the
same as that of the CDF. The values starting at memory address buffer are written to the CDF.

4.3.67.1. Example(s)

The following example writes 2 records to a rVariable named LATITUDE that is a 1-dimensional array with dimension
sizes (181). The dimension variances are {VARY}, and the data type is CDF_INT2. This example is similar to the
CDFputrVarData example except that it uses a single call to CDFhyperPutrVarData rather than numerous calls to
CDFputrVarData.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim i as integer, j as integer ¢ Latitude value.

Dim lats(2,181) as short ¢ Buffer of latitude values.

rVariable number.
Record number.
Record counts.
Record interval.
Dimension indices.
Dimension counts.
Dimension intervals.

Dim varN as integer

Dim recStart as integer = 0
Dim recCount as integer = 2
Dim reclnterval as integer = 1
Dim indices() as integer = {0}
Dim counts() as integer = {181}
Dim intervals() as integer = {1}

try
varN = CDFgetVarNum (id, "LATITUDE")
fori=0 tol
forj=-90 to 90
lats(i,90+1at) = Ctype(j, short)
next j
next i

...status = CDFhyperPutrVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)

catch ex as Exception

end try

4.3.68 CDFhyperPutzVarData

integer CDFhyperPutzVarData(¢ out -- Completion status code.

135

id as long,

varNum as integer,
recStart as integer,
recCount as integer,
recInterval as integer,
indices as integer(),
counts as integer(),
intervals as integer(),
buffer as TYPE)

¢ in-- CDF identifier.

in -- zVariable number.
¢ in -- Starting record number.

in -- Number of records.

in -- Writing interval between records.

in -- Dimension indices of starting value.

in -- Number of values along each dimension.
in -- Writing intervals along each dimension.

in -- Buffer of values.

TYPE -- VB value/string type (likely an array).

CDFhyperPutzVarData is used to write one or more values from the data holding buffer to the specified zVariable. It is
important to know the variable majority of the CDF before using this method because the values in the data buffer will

be written using that

majority. CDFinquireCDF can be used to determine the default variable majority of a CDF

distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities.

The record number starts at 0, not 1. For example, if you want to write 2 records (10" and 11" record), the starting
record number (recStart), the number of records to write (recCount), and the record interval (recInterval) should be 9, 2,
and 1, respectively. Note: you need to provide dummy arrays, with at least one (1) element, for indices, counts and
intervals for scalar variables.

The arguments to CDFhyperPutzVarData are defined as follows:

id

varNum

recStart

recCount

recInterval

indices

counts

intervals

buffer

The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

The zVariable number to which write data. This number may be determined with a call to
CDFgetVarNum.

The record number at which to start writing.

The number of records to write.

The interval between records for writing (e.g., an interval of 2 means write every other record).
The indices (within each record) at which to start writing. Each element of indices specifies the
corresponding dimension index. For O-dimensional zVariable this argument is ignored (but must
be present).

The number of values along each dimension to write. Each element of counts specifies the
corresponding dimension count. For O-dimensional zVariable this argument is ignored (but must
be present).

For each dimension, the interval between values for writing (e.g., an interval of 2 means write
every other value). Each element of intervals specifies the corresponding dimension interval.

For 0-dimensional zVariable this argument is ignored (but must be present).

The data holding buffer of values to write. The majority of the values in this buffer must be the
same as that of the CDF. The values starting at memory address buffer are written to the CDF.

4.3.68.1. Example(s)

136

The following example writes 2 records to a zVariable named LATITUDE that is a 1-dimensional array with
dimension sizes (181). The dimension variances are {VARY}, and the data type is CDF_INT2. This example is
similar to the CDFputzVarData example except that it uses a single call to CDFhyperPutzVarData rather than
numerous calls to CDFputzVarData.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim i as integer, j as integer ¢ Latitude value.

Dim lats(2,181) as short ¢ Buffer of latitude values.

zVariable number.
Record number.
Record counts.
Record interval.
Dimension indices.
Dimension counts.
Dimension intervals.

Dim varN as integer

Dim recStart as integer = 0
Dim recCount as integer = 2
Dim reclnterval as integer = 1
Dim indices() as integer = {0}
Dim counts() as integer = {181}
Dim intervals() as integer = {1}

try
varN = CDFgetVarNum (id, "LATITUDE")
fori=0 to 1
forj=-90 to 90
lats(i,90+1at) = Ctype(j, short)
next j

next i
...status = CDFhyperPutzVarData (id, varN, recStart, recCount, recInterval, indices, counts, intervals, lats)

catch ex as Exception

end try

4.3.69 CDFinquirerVar

integer CDFinquirezVar(out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- rVariable number.

varName as string, out -- rVariable name.

dataType as integer, out -- Data type.

numElements as integer, out -- Number of elements (of the data type).
numDims as integer, out -- Number of dimensions.

dimSizes as integer(), out -- Dimension sizes

recVariance as integer, out -- Record variance.

dimVariances as integer()) out -- Dimension variances.

137

CDFinquirerVar is used to inquire about the specified rVariable. This method would normally be used before reading
rVariable values (with CDFgetrVarData or CDFhyperGetrVarData) to determine the data type and number of elements

of that data type.

The arguments to CDFinquirezVar are defined as follows:

id

varNum

varName
dataType

numElements

numDims

dimSizes

recVariance

dimVariances

4.3.69.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of the rVariable to inquire. This number may be determined with a call to
CDFgetVarNum (see Section 4.3.41).

The rVariable's name.

The data type of the rVariable. The data types are defined in Section 2.6.

The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The number of dimensions.

The dimension sizes. It is a 1-dimensional array, containing one element per dimension.
Each element of dimSizes receives the corresponding dimension size. For 0-dimensional
zVariables this argument is ignored (but must be present).

The record variance. The record variances are defined in Section 2.10.

The dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are described in Section 2.10. For 0-
dimensional zVariables this argument is ignored (but a placeholder is necessary).

The following example returns information about a rVariable named HEAT FLUX in a CDF.

aim id as long

Dim status as integer

Dim varName as string
Dim dataType as integer
Dim numElems as integer
Dim recVary as integer
Dim numDims as integer
Dim dimSizes() as integer
Dim dimVarys() as integer

try

¢ CDF identifier.

Returned status code.

rVariable name.

¢ Data type of the rVariable.

Number of elements (of data type).
Record variance.

Number of dimensions.

Dimension sizes

Dimension variances

138

status = CDFinquirerVar(id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType, _
numElems, numDims, dimSizes, recVary, dimVarys)

catch ex as Exception

end try

4.3.70 CDFinquirezVar

integer CDFinquirezVar(
id as long,

varNum as integer,
varName as string,
dataType as integer,
numElements as integer,
numDims as integer,
dimSizes as integer(),
recVariance as integer,
dimVariances as integer())

out --

Completion status code.

in -- CDF identifier.
in -- zVariable number.

out -- zVariable name.

out -- Data type.

out -- Number of elements (of the data type).
out -- Number of dimensions.

out -- Dimension sizes

out -- Record variance.

out -- Dimension variances.

CDFinquirezVar is used to inquire about the specified zVariable. This method would normally be used before reading
zVariable values (with CDFgetzVarData or CDFhyperGetzVarData) to determine the data type and number of elements

of that data type.

The arguments to CDFinquirezVar are defined as follows:

id

varNum

varName
dataType

numElements

numDims

dimSizes

recVariance

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The number of the zVariable to inquire. This number may be determined with a call to
CDFgetVarNum (see Section 4.3.41).

The zVariable's name.

The data type of the zVariable. The data types are defined in Section 2.6.

The number of elements of the data type at each zVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The number of dimensions.

The dimension sizes. It is a 1-dimensional array, containing one element per dimension.
Each element of dimSizes receives the corresponding dimension size. For 0-dimensional

zVariables this argument is ignored (but must be present).

The record variance. The record variances are defined in Section 2.10.

139

dimVariances The dimension variances. Each element of dimVariances receives the corresponding
dimension variance. The dimension variances are described in Section 2.10. For 0-
dimensional zVariables this argument is ignored (but a placeholder is necessary).

4.3.70.1. Example(s)

The following example returns information about an zVariable named HEAT FLUX in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

Dim varName as string zVariable name.

Dim dataType as integer ¢ Data type of the zVariable.

Dim numElems as integer Number of elements (of data type).
Dim recVary as integer Record variance.

Dim numDims as integer Number of dimensions.

Dim dimSizes() as integer Dimension sizes

Dim dimVarys() as integer Dimension variances

try
status = CDFinquirezVar(id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType,
numElems, numDims, dimSizes, recVary, dimVarys)

catch ex as Exception

end try

4.3.71 CDFputrVarData

integer CDFputrVarData(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ‘¢ in -- Data value.

¢ TYPE -- VB value/string type

CDFputrVarData writes a single data value to the specified index, the location of the element, in the given record of the
specified rVariable in a CDF.
The arguments to CDFputrVarData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

140

varNum The rVariable number.

recNum The record number.
indices The dimension indices within the record.
value The data value.

4.3.71.1. Example(s)

The following example will write two data values, the first and the fifth element, in Record 0 from rVariable
“MY_VAR?”, a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF. The first put operation
passes the pointer of the data value, while the second operation passes the data value as an object.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The dimension indices.
Dim valuel as double, value2 as double The data values.

Dim status as integer.

3
3

3

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
recNum =0
indices(0) =0
indices(1)=0
valuel = 10.1
status = CDFputrVarData (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
value2 =20.2
status = CDFputrVarData (id, varNum, recNum, indices, value2)

catch ex as Exception

end try

4.3.72 CDFputrVarPadValue

integer CDFputrVarPadValue(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ in -- Pad value.
‘ TYPE — VB value/string type

141

CDFputrVarPadValue specifies the pad value for the specified rVariable in a CDF. A rVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDFputrVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

value The pad value.

4.3.72.1. Example(s)

The following example sets the pad value to —9999 for rVariable “MY_VAR”, a CDF _INT4 type variable, and
«xE*xE for another rVariable “MY_VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.

dim id as long ¢ CDF identifier.

Dim padValuel as integer = -9999 ¢ An integer pad value.
Dim padValue?2 as string = “*****”» ¢ A string pad value. °
try

status = CDFputrVarPadValue (id, CDFgetVarNum (id, “MY_VAR?”), padValuel)

status = CDFputrVarPadValue (id, CDFgetVarNum (id, “MY_VAR2”), padValue?2)

catch ex as Exception

end try

4.3.73 CDFputrVarRecordData

integer CDFputrVarRecordData(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.

buffer as TYPE) ¢ in -- Record data.
¢ TYPE -- VB value/string type (likely an
¢ array)

142

CDFputrVarRecordData writes an entire record at a given record number for the specified rVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputrVarRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
recNum The record number.
buffer The buffer holding the entire record values.

4.3.73.1. Example(s)

The following example will write one full record (numbered 2) from rVariable “MY_VAR?”, a 2-dimension (2 by 3),
CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ rVariable number.

Dim buffer(2,3) as integer = {{1,2,3},{4,5,6}} ¢ The data holding buffer.
try

varNum = CDFvarNum (id,”"MY_VAR”)
status = CDFputrVarRecordData (id, varNum, 2, buffer)

catch ex as Exception

end try

4.3.74 CDFputrVarSeqData

integer CDFputrVarSeqData(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ in -- Data value.
¢ TYPE -- VB value/string type

143

CDFputrVarSeqData writes one value to the specified rVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetrVarSeqPos method to set the current sequential value (position).

The arguments to CDFputrVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

value The buffer holding the data value.

4.3.74.1. Example(s)

The following example will write two data values starting at record number 2 from a 2-dimensional rVariable whose
data type is CDF_INT4. The first write will pass in a pointer from the data value, while the second write will pass in
the data value object directly.

dim id as long ¢ CDF identifier.

Dim varNum as integer ¢ The variable number.
Dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.
Dim recNum as integer The record number.
dim status as integer

3
3

3

'recNum =2
indices(0) =1
indices(1) =2

try
valuel =10
value2 = -20.

status = CDFsetrVarSeqPos (id, varNum, recNum, indices)
status = CDFputrVarSeqData (id, varNum, valuel)
status = CDFputrVarSeqData (id, varNum, value2)

catch ex as Exception

end try

4.3.75 CDFputzVarData

integer CDFputzVarData(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.

144

indices as integer(), ¢ in -- Dimension indices.
value as TYPE) ‘¢ in -- Data value.
¢ TYPE -- VB value/string type

CDFputzVarData writes a single data value to the specified index, the location of the element, in the given record of the
specified zVariable in a CDF.
The arguments to CDFputzVarData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recNum The record number.

indices The dimension indices within the record.
value The data value.

4.3.75.1. Example(s)

The following example will write two data values, the first and the fifth element, in Record 0 from zVariable
“MY_VAR?”, a 2-dimensional (2 by 3), CDF_DOUBLE type variable, in a row-major CDF. The first put operation
passes the pointer of the data value, while the second operation passes the data value as an object.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ zVariable number.

dim recNum as integer The record number.
Dim indices(2) as integer ¢ The dimension indices.
Dim valuel as double, value2 as double ¢ The data values.

Dim status as integer.

3

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
recNum =0
indices(0) =0
indices(1)=0
valuel = 10.1
status = CDFputzVarData (id, varNum, recNum, indices, valuel)
indices(0) =1
indices(1) =1
value2 =20.2
status = CDFputzVarData (id, varNum, recNum, indices, value2)

catch ex as Exception

145

end try

4.3.76 CDFputzVarPadValue

integer CDFputzVarPadValue(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ in -- Pad value.
¢ TYPE -- VB value/string type

CDFputzVarPadValue specifies the pad value for the specified zVariable in a CDF. A zVariable's pad value may be
specified (or respecified) at any time without affecting already written values (including where pad values were used).
The Concepts chapter in the CDF User's Guide describes variable pad values.

The arguments to CDFputzVarPadValue are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The pad value.

4.3.76.1. Example(s)

The following example sets the pad value to —9999 for zVariable “MY_VAR”, a CDF_INT4 type variable, and
«xE**E for another zVariable “MY_VAR2”, a CDF_CHAR type with a number of elements of five (5), in a CDF.

dim id as long ¢ CDF identifier.
dim padValuel as integer = -9999 ¢ An integer pad value.
Dim padValue?2 as string = “*****”» ¢ A string pad value. °

Dim status as integer.
try
status = CDFputzVarPadValue (id, CDFgetVarNum (id, “MY_VAR”), padValuel)

status = CDFputzVarPadValue (id, CDFgetVarNum (id, “MY_VAR2”), padValue2)

catch ex as Exception

end try

146

4.3.77 CDFputzVarRecordData

integer CDFputzVarRecordData(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
recNum as integer, in -- Record number.

buffer as TYPE) ¢ in -- Record data.
¢ TYPE -- VB value/string type (likely an
¢ array)

CDFputzVarRecordData writes an entire record at a given record number for the specified zVariable in a CDF. The
buffer should hold the entire data values for the variable. The data values in the buffer should be in the order that
corresponds to the variable majority defined for the CDF.

The arguments to CDFputzVarRecordData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The record number.
buffer The buffer holding the entire record values.

4.3.77.1. Example(s)

The following example will write one full record (numbered 2) from zVariable “MY_VAR”, a 2-dimension (2 by 3),
CDF_INT4 type variable, in a CDF. The variable’s dimension variances are all VARY.

dim id as long ¢ CDF identifier.
dim varNum as integer ¢ zVariable number.
Dim buffer(,)as integer = {{1,2,3},{4,5,6}} ¢ The data holding buffer.

Dim status as integer
try
varNum = CDFvarNum (id,”"MY_VAR”)
status = CDFputzVarRecordData (id, varNum, 2, buffer)

catch ex as Exception

end try

147

4.3.78 CDFputzVarSeqData

integer CDFputzVarSeqData(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer, in -- Variable number.
value as TYPE) ¢ in -- Data value.
¢ TYPE -- VB value/string type

CDFputzVarSeqData writes one value to the specified zVariable in a CDF at the current sequential value (position) for
that variable. After the write, the current sequential value is automatically incremented to the next value. Use
CDFsetzVarSeqPos method to set the current sequential value (position).

The arguments to CDFputzVarSeqData are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

value The buffer holding the data value.

4.3.78.1. Example(s)

The following example will write two data values starting at record number 2 from a 2-dimensional zVariable whose
data type is CDF_INT4. The first write will pass in a pointer from the data value, while the second write will pass in
the data value object directly.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ The variable number.
dim valuel as integer, value2 as integer The data value.

Dim indices(2) as integer The indices in a record.
dim recNum as integer ¢ The record number.
Dim status as integer

3

recNum = 2
indices(0) =1
indices(1) =2

try
valuel =10
value2 = -20.

status = CDFsetzVarSeqPos (id, varNum, recNum, indices)
status = CDFputzVarSeqData (id, varNum, valuel)
status = CDFputzVarSeqData (id, varNum, value2)

catch ex as Exception

end try

148

4.3.79 CDFrenamerVar

integer CDFrenamerVar(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- rVariable number.
varName as string) in -- New name.

CDFrenamerVar is used to rename an existing rVariable. A variable (rVariable or zVariable) with the same name must
not already exist in the CDF.
The arguments to CDFrenamerVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum The number of the rVariable to rename. This number may be determined with a call to
CDFgetVarNum.
varName The new rVariable name. This may be at most CDF_VAR NAME LEN256 characters.

Variable names are case-sensitive.

4.3.79.1. Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an rVariable number but rather an error code.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim varNum as integer ¢ zVariable number.
try

varNum = CDFgetVarNum (id, "TEMPERATURE")
status = CDFrenamerVar (id, varNum, "TMP")

catch ex as Exception

end try

149

4.3.80 CDFrenamezVar

integer CDFrenamezVar(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- zVariable number.
varName as string) in -- New name.

CDFrenamezVar is used to rename an existing zVariable. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.
The arguments to CDFrenamezVar are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

varNum The number of the zVariable to rename. This number may be determined with a call to
CDFgetVarNum.
varName The new zVariable name. This may be at most CDF_ VAR NAME LEN256 characters.

Variable names are case-sensitive.

4.3.80.1. Example(s)

In the following example the zVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDFgetVarNum returns a value less than zero (0) then that value is not an zVariable number but rather an error code.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim varNum as integer ¢ zVariable number.
try

varNum = CDFgetVarNum (id, "TEMPERATURE")
status = CDFrenamezVar (id, varNum, "TMP")

catch ex as Exception

end try

4.3.81 CDFsetrVarAllocBlockRecords

integer CDFsetrVarAllocBlockRecords(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

150

3

in -- Variable number.
in -- First record number.
in -- Last record number.

varNum as integer,
firstRec as integer,
lastRec as integer)

3

3

CDFsetrVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified rVariable in a
CDF. This operation is only applicable to uncompressed rVariable in single-file CDFs. Refer to the CDF User’s Guide
for the descriptions of allocating variable records.

The arguments to CDFsetrVarAllocBlockRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
firstRec The first record number to allocate.
lastRec The last record number to allocate.

4.3.81.1. Example(s)

The following example allocates 10 records, from record numbered 10 to 19, for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim firstRec as integer, lastRec as integer ¢ The first/last record numbers.
Dim status as integer.

firstRec = 10
lastRec =19

try

status = CDFsetrVarAllocBlockRecords (id, CDFgetVarNum (id, “MY_VAR?), firstRec, lastRec)

catch ex as Exception

end try

4.3.82 CDFsetrVarAllocRecords

integer CDFsetrVarAllocRecords(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

151

CDFsetrVarAllocRecords specifies a number of records to be allocated (not written) for the specified rVariable in a
CDF. The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
rVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetrVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numRecs The number of records to allocate.

4.3.82.1. Example(s)

The following example allocates 100 records, from record numbered 0 to 99, for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim numRecs as integer ¢ The number of records.
dim status as integer

numRecs = 100
try

status = CDFsetrVarAllocRecords (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception

end try

4.3.83 CDFsetrVarBlockingFactor

integer CDFsetrVarBlockingFactor(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) in -- Blocking factor.

CDFsetrVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified rVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.
The arguments to CDFsetrVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

152

varNum The rVariable number.

bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being
used.

4.3.83.1. Example(s)

The following example sets the blocking factor to 100 records for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim bf as integer ¢ The blocking factor.
dim status as integer

bf = 100
try

status = CDFsetrVarBlockingFactor (id, CDFgetVarNum (id, “MY_VAR?”), bf)

catch ex as Exception

end try

4.3.84 CDFsetrVarCacheSize

integer CDFsetrVarCacheSize(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) in -- Number of cache buffers.

CDFsetrVarCacheSize specifies the number of cache buffers being for the rVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetrVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numBuffers The number of cache buffers.

153

4.3.84.1. Example(s)

The following example sets the number of cache buffers to 10 for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
dim status as integer

numBuffers = 10
try

status = CDFsetrVarCacheSize (id, CDFgetVarNum (id, “MY_VAR?”), numBuffers)

catch ex as Exception

end try

4.3.85 CDFsetrVarCompression

integer CDFsetrVarCompression(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
compType as integer, in -- Compression type.
cParms as integer()) in -- Compression parameters.

CDFsetrVarCompression specifies the compression type/parameters for the specified rVariable in a CDF. Refer to
Section 2.11 for a description of the CDF supported compression types/parameters.
The arguments to CDFsetrVarCompression are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.
compType The compression type.
cParms The compression parameters.

4.3.85.1. Example(s)

The following example sets the compression to GZIP.6 for rVariable “MY_VAR” in a CDF.

154

dim id as long ¢ CDF identifier.

Dim compType as integer ¢ The compression type.

Dim cParms(1) as integer ¢ The compression parameters.
dim status as integer

compType = GZIP_ COMPRESSION
cParms(0) =6
try

status = CDFsetrVarCompression (id, CDFgetVarNum (id, “MY_VAR?”), compType, cParms)

catch ex as Exception

end try

4.3.86 CDFsetrVarDataSpec

integer CDFsetrVarDataSpec(¢ out -- Completion status code.

id as long,
varNum as integer,
dataType as integer)

¢ in-- CDF identifier.
in -- Variable number.
in -- Data type.

CDFsetrVarDataSpec respecifies the data type of the specified rVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent (type having a different data size) to the old data type and any values
(including the pad value) have been written. Data specifications are considered equivalent if the data types are
equivalent. Refer to the CDF User’s Guide for equivalent data types.

The arguments to CDFsetrVarDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

dataType The new data type.

4.3.86.1. Example(s)

The following example respecifies the data type to CDF INT2 (from its original CDF _UINT2) for rVariable
“MY_VAR” in a CDF.

155

dim id as long ¢ CDF identifier.
Dim dataType as integer ¢ The data type.
Dim status as integer.

dataType = CDF_INT2
try

status = CDFsetrVarDataSpec (id, CDFgetVarNum (id, “MY_VAR?”), dataType)

catch ex as Exception

end try

4.3.87 CDFsetrVarDimVariances

integer CDFsetrVarDimVariances(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) in -- Dimension variances.

CDFsetrVarDimVariances respecifies the dimension variances of the specified rVariable in a CDF. For 0-dimensional
rVariable, this operation is not applicable. The dimension variances are described in Section 2.10.
The arguments to CDFsetrVarDimVariances are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

dimVarys The dimension variances.

4.3.87.1. Example(s)

The following example resets the dimension variances to true (VARY) and true (VARY) for rVariable “MY_VAR”, a
2-dimensional variable, in a CDF.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ rVariable number.

Dim dimVarys() as integer = {VARY, VARY} ¢ The dimension variances.
dim status as integer

try

varNum = CDFgetVarNum (id, “MY_VAR”)

156

status = CDFsetrVarDimVariances (id, varNum, dimVarys)

catch ex as Exception

end try

4.3.88 CDFsetrVarlnitialRecs

integer CDFsetrVarlnitialRecs(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetrVarlnitialRecs specifies a number of records to initially write to the specified rVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per rVariable and before any other
records have been written to that rVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the
records. The Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetrVarlnitialRecs are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

numRecs The initially written records.

4.3.88.1. Example(s)

The following example writes the initial 100 records to rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ rVariable number.

dim numRecs as integer ¢ The number of records.
Dim status as integer.

try
varNum = CDFgetVarNum (id, “MY_VAR?”)

numRecs = 100
status = CDFsetrVarlnitialRecs (id, varNum, numRecs)

catch ex as Exception

157

end try

4.3.89 CDFsetrVarRecVariance

integer CDFsetrVarRecVariance(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
recVary as integer) in -- Record variance.

CDFsetrVarRecVariance specifies the record variance of the specified rVariable in a CDF. The record variances are
described in Section 2.10.
The arguments to CDFsetrVarRecVariance are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

recVary The record variance.

4.3.89.1. Example(s)

The following example sets the record variance to VARY (from NOVARY) for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim recVary as integer ¢ The record variance.
Dim status as integer.

recVary = VARY
try

status = CDFsetrVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), recVary)

catch ex as Exception

end try

4.3.90 CDFsetrVarReservePercent

3

integer CDFsetrVarReservePercent(out -- Completion status code.

158

id as long, ¢ in -- CDF identifier.
varNum as integer, ¢ in -- Variable number.
percent as integer) in -- Reserve percentage.

3

CDFsetrVarReservePercent specifies the compression reserve percentage being used for the specified rVariable in a
CDF. This operation only applies to compressed rVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFsetrVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

percent The reserve percentage.

4.3.90.1. Example(s)

The following example sets the reserve percentage to 10 for rVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim percent as integer ¢ The reserve percentage.
Dim status as integer.

percent = 10
try

status = CDFsetrVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent)

catch ex as Exception

end try

4.3.91 CDFsetrVarsCacheSize

integer CDFsetrVarsCacheSize(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
numBuffers as integer) ¢ in -- Number of cache buffers.

CDFsetrVarsCacheSize specifies the number of cache buffers to be used for all of the rVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.

159

The arguments to CDFsetrVarsCacheSize are defined as follows:
id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of buffers.

4.3.91.1. Example(s)

The following example sets the number of cache buffers to 10 for all rVariables in a CDF.

dim id as long ¢ CDF identifier.
dim numBuffers as integer ¢ The number of cache buffers.
Dim status as integer.

numBuffers = 10
try

status = CDFsetrVarsCacheSize (id, numBuffers)

catch ex as Exception

end try

4.3.92 CDFsetrVarSeqPos

integer CDFsetrVarSeqPos(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

dim recNum as integer, in -- Record number.

indices as integer()) in -- Indices in a record.

CDFsetrVarSeqPos specifies the current sequential value (position) for sequential access for the specified rVariable in
a CDF. Note that a current sequential value is maintained for each rVariable individually. Use CDFgetrVarSeqPos
method to get the current sequential value.

The arguments to CDFsetrVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

recNum The rVariable record number.

160

indices The dimension indices. Each element of indices receives the corresponding dimension
index. For O-dimensional rVariable, this argument is ignored, but must be presented.

4.3.92.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for a rVariable, a
2-dimensional variable, in a CDF.

dim id as long ¢ CDF identifier.
Dim varNum as integer ¢ The variable number.
dim recNum as integer ¢ The record number.

3

Dim indices(2) as integer The indices.

'recNum =2
indices(0) =0
indices(1)=0

try
status = CDFsetrVarSeqPos (id, varNum, recNum, indices)

catch ex as Exception

end try

4.3.93 CDFsetrVarSparseRecords

integer CDFsetrVarSparseRecords(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) in -- The sparse records type.

CDFsetrVarSparseRecords specifies the sparse records type of the specified rVariable in a CDF. Refer to Section
2.12.1 for the description of sparse records.
The arguments to CDFsetrVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The rVariable number.

sRecordsType The sparse records type.

161

4.3.93.1. Example(s)

The following example sets the sparse records type to PAD_SPARSERECORDS from its original type for rVariable
“MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.

sRecordsType = PAD _SPARSERECORDS

try
status = CDFsetrVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR”), sRecordsType)

catch ex as Exception

end try

4.3.94 CDFsetzVarAllocBlockRecords

integer CDFsetzVarAllocBlockRecords(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
firstRec as integer, in -- First record number.
lastRec as integer) in -- Last record number.

CDFsetzVarAllocBlockRecords specifies a range of records to be allocated (not written) for the specified zVariable in
a CDF. This operation is only applicable to uncompressed zVariable in single-file CDFs. Refer to the CDF User’s
Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocBlockRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
firstRec The first record number to allocate.
lastRec The last record number to allocate.

4.3.94.1. Example(s)

The following example allocates 10 records, from record numbered 10 to 19, for zVariable “MY_VAR” in a CDF.

162

dim id as long ¢ CDF identifier.
dim firstRec as integer, lastRec as integer ¢ The first/last record numbers.
dim status as integer

firstRec = 10
lastRec =19

try

status = CDFsetzVarAllocBlockRecords (id, CDFgetVarNum (id, “MY_VAR?”), firstRec, lastRec)

catch ex as Exception

end try

4.3.95 CDFsetzVarAllocRecords

integer CDFsetzVarAllocRecords(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetzVarAllocRecords specifies a number of records to be allocated (not written) for the specified zVariable in a
CDF. The records are allocated beginning at record number zero (0). This operation is only applicable to uncompressed
zVariable in single-file CDFs. Refer to the CDF User’s Guide for the descriptions of allocating variable records.

The arguments to CDFsetzVarAllocRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The number of records to allocate.

4.3.95.1. Example(s)

The following example allocates 100 records, from record numbered 0 to 99, for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numRecs as integer ¢ The number of records.
Dim status as integer.

163

numRecs = 100
try

status = CDFsetzVarAllocRecords (id, CDFgetVarNum (id, “MY_VAR”), numRecs)

catch ex as Exception

end try

4.3.96 CDFsetzVarBlockingFactor

integer CDFsetzVarBlockingFactor(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

bf as integer) in -- Blocking factor.

CDFsetzVarBlockingFactor specifies the blocking factor (number of records allocated) for the specified zVariable in a
CDF. Refer to the CDF User’s Guide for a description of the blocking factor.
The arguments to CDFsetzVarBlockingFactor are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
bf The blocking factor. A value of zero (0) indicates that the default blocking factor is being
used.

4.3.96.1. Example(s)

The following example sets the blocking factor to 100 records for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim bf as integer ¢ The blocking factor.
Dim status as integer.

bf'= 100
try
status = CDFsetzVarBlockingFactor (id, CDFgetVarNum (id, “MY_VAR?”), bf)

catch ex as Exception

164

end try

4.3.97 CDFsetzVarCacheSize

integer CDFsetzVarCacheSize(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
numBuffers as integer) in -- Number of cache buffers.

CDFsetzVarCacheSize specifies the number of cache buffers being for the zVariable in a CDF. This operation is not
applicable to a single-file CDF. Refer to the CDF User’s Guide for description about caching scheme used by the CDF
library.

The arguments to CDFsetzVarCacheSize are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numBuffers The number of cache buffers.

4.3.97.1. Example(s)

The following example sets the number of cache buffers to 10 for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
Dim status as integer.

numBuffers = 10
try
status = CDFsetzVarCacheSize (id, CDFgetVarNum (id, “MY_VAR”), numBuffers)

catch ex as Exception
end try

4.3.98 CDFsetzVarCompression

165

integer CDFsetzVarCompression(

id as long,

varNum as integer,
compType as integer,
cParms as integer())

out -- Completion status code.
¢ in-- CDF identifier.

in -- Variable number.

in -- Compression type.

in -- Compression parameters.

CDFsetzVarCompression specifies the compression type/parameters for the specified zVariable in a CDF. Refer to
Section 2.11 for a description of the CDF supported compression types/parameters.

The arguments to CDFsetzVarCompression are defined as follows:

id

varNum
compType

cParms

4.3.98.1. Example(s)

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

The zVariable number.
The compression type.

The compression parameters.

The following example sets the compression to GZIP.6 for zVariable “MY_VAR” in a CDF.

dim id as long

¢ CDF identifier.

Dim compType as integer ¢ The compression type.
Dim cParms(1) as integer ¢ The compression parameters.

compType = GZIP_ COMPRESSION

cParms(0) =6
try

status = CDFsetzVarCompression (id, CDFgetVarNum (id, “MY_VAR”), compType, cParms)

catch ex as Exception

end try

4.3.99 CDFsetzVarDataSpec

integer CDFsetzVarDataSpec(¢ out -- Completion status code.

id as long,
varNum as integer,
dataType as integer)

¢ in-- CDF identifier.
in -- Variable number.
in -- Data type.

166

CDFsetzVarDataSpec respecifies the data type of the specified zVariable in a CDF. The variable’s data type cannot be
changed if the new data type is not equivalent (type having a different data size) to the old data type and any values
(including the pad value) have been written. Data specifications are considered equivalent if the data types are
equivalent. Refer to the CDF User’s Guide for equivalent data types.

The arguments to CDFsetzVarDataSpec are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dataType The new data type.

4.3.99.1. Example(s)

The following example respecifies the data type to CDF _INT2 (from its original CDF _UINT2) for zVariable
“MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim dataType as integer ¢ The data type.
Dim status. as integer

dataType = CDF_INT2
try

status = CDFsetzVarDataSpec (id, CDFgetVarNum (id, “MY_VAR?”), dataType)

catch ex as Exception

end try

4.3.100 CDFsetzVarDimVariances

integer CDFsetzVarDimVariances(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
dimVarys as integer()) in -- Dimension variances.

CDFsetzVarDimVariances respecifies the dimension variances of the specified zVariable in a CDF. For 0-dimensional
zVariable, this operation is not applicable. The dimension variances are described in Section 2.10.

167

The arguments to CDFsetzVarDimVariances are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

dimVarys The dimension variances.

4.3.100.1. Example(s)

The following example resets the dimension variances to true (VARY) and true (VARY) for zVariable “MY_VAR”, a
2-dimensional variable, in a CDF.

dim id as long ¢ CDF identifier.
dim varNum as integer ¢ zVariable number.
Dim dimVarys()as integer = {VARY, VARY} ¢ The dimension variances.

Dim status as integer

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
status = CDFsetzVarDimVariances (id, varNum, dimVarys)

catch ex as Exception

end try

4.3.101 CDFsetzVarlnitialRecs

integer CDFsetzVarlInitialRecs(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
numRecs as integer) in -- Number of records.

CDFsetzVarlnitialRecs specifies a number of records to initially write to the specified zVariable in a CDF. The records
are written beginning at record number 0 (zero). This may be specified only once per zVariable and before any other
records have been written to that zVariable. If a pad value has not yet been specified, the default is used (see the
Concepts chapter in the CDF User’s Guide). If a pad value has been explicitly specified, that value is written to the
records. The Concepts chapter in the CDF User's Guide describes initial records.

The arguments to CDFsetzVarInitialRecs are defined as follows:

168

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

numRecs The initially written records.

4.3.101.1. Example(s)

The following example writes the initial 100 records to zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim varNum as integer ¢ zVariable number.
Dim numRecsas integer ¢ The number of records.

dim status as integer
try
varNum = CDFgetVarNum (id, “MY_VAR?”)

numRecs = 100
status = CDFsetzVarlnitialRecs (id, varNum, numRecs)

catch ex as Exception

end try

4.3.102 CDFsetzVarRecVariance

integer CDFsetzVarRecVariance(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
recVary as integer) in -- Record variance.

CDFsetzVarRecVariance specifies the record variance of the specified zVariable in a CDF. The record variances are
described in Section 2.10.
The arguments to CDFsetzVarRecVariance are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

recVary The record variance.

169

4.3.102.1. Example(s)

The following example sets the record variance to VARY (from NOVARY) for zVariable “MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
Dim recVary as integer ¢ The record variance.
Dim status as integer

recVary = VARY
try

status = CDFsetzVarRecVariance (id, CDFgetVarNum (id, “MY_VAR?”), recVary)

catch ex as Exception

end try

4.3.103 CDFsetzVarReservePercent

integer CDFsetzVarReservePercent(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.
percent as integer) in -- Reserve percentage.

CDFsetzVarReservePercent specifies the compression reserve percentage being used for the specified zVariable in a
CDF. This operation only applies to compressed zVariables. Refer to the CDF User’s Guide for a description of the
reserve scheme used by the CDF library.

The arguments to CDFsetzVarReservePercent are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

percent The reserve percentage.

4.3.103.1. Example(s)

The following example sets the reserve percentage to 10 for zVariable “MY_VAR” in a CDF.

170

dim id as long ¢ CDF identifier.
Dim percent as integer ¢ The reserve percentage.
Dim status as integer

percent = 10
try

status = CDFsetzVarReservePercent (id, CDFgetVarNum (id, “MY_VAR?”), percent)

catch ex as Exception

end try

4.3.104 CDFsetzVarsCacheSize

integer CDFsetzVarsCacheSize(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
numBuffers as integer) ¢ in -- Number of cache buffers.

CDFsetzVarsCacheSize specifies the number of cache buffers to be used for all of the zVariable files in a CDF. This
operation is not applicable to a single-file CDF. The Concepts chapter in the CDF User's Guide describes the caching
scheme used by the CDF library.
The arguments to CDFsetzVarsCacheSize are defined as follows:
id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numBuffers The number of buffers.

4.3.104.1. Example(s)

The following example sets the number of cache buffers to 10 for all zVariables in a CDF.

dim id as long ¢ CDF identifier.
Dim numBuffers as integer ¢ The number of cache buffers.
.dim status as integer

numBuffers = 10
try

status = CDFsetzVarsCacheSize (id, numBuffers)

171

catch ex as Exception

end try

4.3.105 CDFsetzVarSeqPos

integer CDFsetzVarSeqPos(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- Variable number.

dim recNum as integer, in -- Record number.

indices as integer as integer()) in -- Indices in a record.

CDFsetzVarSeqPos specifies the current sequential value (position) for sequential access for the specified zVariable in
a CDF. Note that a current sequential value is maintained for each zVariable individually. Use CDFgetzVarSeqPos
method to get the current sequential value.

The arguments to CDFsetzVarSeqPos are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.
recNum The zVariable record number.
indices The dimension indices. Each element of indices receives the corresponding dimension

index. For 0-dimensional zVariable, this argument is ignored, but must be presented.

4.3.105.1. Example(s)

The following example sets the current sequential value to the first value element in record number 2 for a zVariable, a
2-dimensional variable, in a CDF.

dim id as long ¢ CDF identifier.

dim varNum as integer ¢ The variable number.
Dim recNum as integer The record number.
Dim indices(2) as integer The indices.

3

3

recNum = 2
indices(0) =0
indices(1)=0
try
status = CDFsetzVarSeqPos (id, varNum, recNum, indices)

172

catch ex as Exception

end try

4.3.106 CDFsetzVarSparseRecords

integer CDFsetzVarSparseRecords(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- The variable number.
sRecordsType as integer) in -- The sparse records type.

CDFsetzVarSparseRecords specifies the sparse records type of the specified zVariable in a CDF. Refer to Section
2.12.1 for the description of sparse records.
The arguments to CDFsetzVarSparseRecords are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

varNum The zVariable number.

sRecordsType The sparse records type.

4.3.106.1. Example(s)

The following example sets the sparse records type to PAD_SPARSERECORDS from its original type for zVariable
“MY_VAR” in a CDF.

dim id as long ¢ CDF identifier.
dim sRecordsType as integer ¢ The sparse records type.
Dim status as integer.

sRecordsType = PAD _SPARSERECORDS

try
status = CDFsetzVarSparseRecords (id, CDFgetVarNum (id, “MY_VAR?”), sRecordsType)

catch ex as Exception

end try

173

4.3.107 CDFvarClose’

3

integer CDFvarClose(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer) ¢ in -- rVariable number.

CDFvarClose closes the specified rVariable file from a multi-file format CDF. The variable's cache buffers are flushed
before the variable's open file is closed. However, the CDF file is still open.

NOTE: You must close all open variable files to guarantee that all modifications you have made will actually be
written to the CDF's file(s). If your program exits, normally or otherwise, without a successful call to CDFclose, the
CDF's cache buffers are left unflushed.

The arguments to CDFclose are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopen.

varNum The variable number for the open rVariable’s file. This identifier must have been initialized by a call
to CDFgetVarNum.

4.3.107.1. Example(s)

The following example will close an open rVariable in a multi-file CDF.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.
try

status = CDFvarClose (id, CDFvarNum (id, “Flux’))

catch ex as Exception

end try

4.3.108 CDFvarCreate!’

3

integer CDFvarCreate(out -- Completion status code.

% A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFcloserVar is the preferred
function for it.

19 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFcreaterVar is the preferred
function for it.

174

id as long,

varName as string,
dataType as integer,
numElements as integer,
recVariance as integer,
dimVariances as integer(),
varNum as integer)

¢ in -- CDF identifier.

in -- rVariable name.

in -- Data type.

in -- Number of elements (of the data type).
in -- Record variance.

in -- Dimension variances.

out -- rVariable number.

CDFvarCreate is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDFvarCreate are defined as follows:

id

varName

dataType

numElements

recVariance

dimVariances

varNum

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The name of the rVariable to create. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

The data type of the new rVariable. Specify one of the data types defined in Section 2.6.

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The rVariable's record variance. Specify one of the variances defined in Section 2.10.

The rVariable's dimension variances. Each element of dimVariances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 2.10. For 0-dimensional rVariables this argument is ignored (but must
be present).

The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVariable. An existing rVariable's number may
be determined with the CDFvarNum or CDFgetVarNum function.

4.3.108.1. Example(s)

The following example will create several rVariables in a 2-dimensional CDF.

dim id as long
dim stats as integer

¢ CDF identifier.
Returned status code.

dim EPOCHrecVary as integer = VARY ¢ EPOCH record variance.
Dim LATrecVary as integer = NOVARY ¢ LAT record variance.

Dim LONrecVary as integer = NOVARY ¢ LON record variance.

Dim TMPrecVary as integer = VARY ¢ TMP record variance.

Dim EPOCHdimVarys() as integer = {NOVARY,NOVARY} ¢ EPOCH dimension variances.
Dim LATdimVarys() as integer = {VARY,VARY} ¢ LAT dimension variances.

175

Dim LONdimVarys() as integer = {VARY,VARY} ¢ LON dimension variances.

Dim TMPdimVarys() as integer = {VARY,VARY} ¢ TMP dimension variances.
Dim EPOCHvarNum as integer ¢ EPOCH zVariable number.
Dim LATvarNum as integer ¢ LAT zVariable number.
Dim LONvarNum as integer ¢ LON zVariable number.
Dim TMPvarNum as integer ¢ TMP zVariable number.
try

status = CDFvarCreate (id, "EPOCH", CDF_EPOCH, 1, _
EPOCHrecVary, EPOCHdimVarys, EPOCHvarNum)

status = CDFvarCreate (id, "LATITUDE", CDF_INT2, 1, _
LATrecVary, LATdimVarys, LATvarNum)

status = CDFvarCreate (id, "INTITUDE", CDF_INT2, 1, _
LONrecVary, LONdimVarys, LONvarNum)

status = CDFvarCreate (id, "TEMPERATURE", CDF_REAL4, 1, _
TMPrecVary, TMPdimVarys, TMPvarNum)

catch ex as Exception

end try

4.3.109 CDFvarGet!!

integer CDFvarGet(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- rVariable number.

dim recNum as integer, in -- Record number.

indices as integer(), in -- Dimension indices.

value as TYPE) ¢ out -- Value.

TYPE -- VB value/string type or object

CDFvarGet is used to read a single value from an rVariable.

The arguments to CDFvarGet are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum The rVariable number from which to read data.
recNum The record number at which to read.
indices The dimension indices within the record.

1A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFgetrVarData is the preferred
function for it.

176

value The data value read. This buffer must be large enough to hold the value.

4.3.109.1. Example(s)

The following example returns two data values, the first and the fifth element, in Record 0 from an rVariable named
MY _VAR, a 2-dimensional (2 by 3) CDF_DOUBLE type variable, in a row-major CDF. The first get operation passes
the value pointer, while the second operation uses “out” argument modifier.

dim id as long ¢ CDF identifier.
dim recNum as integer ¢ The record number.
dim varNum as integer ¢ The variable number.

The dimension indices.
The data values.

Dim indices(2) as integer
Dim valuel as double, value2 as double
Dim status as integer.

try
varNum = CDFvarNum (id, “MY_VAR”)
recNum =0
indices(0) =0
indices(1)=0
status = CDFvarGet (id, varNum, recNum, indices, valuel)
indices(0) = 1
indices(1) =1
object value2o
status = CDFvarGet (id, varNum, recNum, indices, value20)

value2 = value2o
catch ex as Exception

end try

4.3.110 CDFvarHyperGet!

integer CDFvarHyperGet(out -- Completion status code.

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- rVariable number.

recStart as integer, in -- Starting record number.

recCount as integer, ¢ in -- Number of records.

recInterval as integer, in -- Subsampling interval between records.
indices as integer(), in -- Dimension indices of starting value.

counts as integer(), ‘¢ in -- Number of values along each dimension.
intervals as integer(), in -- Subsampling intervals along each dimension.

values as TYPE) ¢ out -- Values.

12 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFhyperGetrVarData is the
preferred function for it.

177

¢ TYPE -- VB value/string type or object

CDFvarHyperGet is used to fill a buffer of one or more values from the specified rVariable. It is important to know the
variable majority of the CDF before using CDFvarHyperGet because the values placed into the buffer will be in that
majority. CDFinquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities. Note: you need to provide dummy arrays, with at
least one (1) element, for indices, counts and intervals for scalar variables.

4.3.110.1. Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional
with sizes (180,91,10) and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,
the dimension variances are {VARY,VARY,VARY}, and the data type is CDF_REALA4. This example is similar to the
example provided for CDFvarGet except that it uses a single call to CDFvarHyperGet rather than numerous calls to
CDFvarGet.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
Dim tmp(,,) as single Temperature values.
Dim varN as integer rVariable number.
Dim recStart as integer = 13 Record number.

Dim recCount as integer = 1 Record counts.

Dim reclnterval as integer = 1 Record interval.

Dim indices() as integer = {0,0,0} Dimension indices.
Dim counts() as integer = {180,91,10} ¢ Dimension counts.
Dim intervals() as integer = {1,1,1} Dimension intervals.

tryVarN = CDFgetVarNum (id, "Temperature")
status = CDFvarHyperGet (id, varN, recStart, recCount, recInterval, indices, counts, intervals, tmp)
'catch ex as Exception
end try
Note that if the CDF's variable majority had been COLUMN_MAJOR, the tmp array would have been declared simple
type of tmp(10,91,180) for proper indexing.

4.3.111 CDFvarHyperPut"

3

integer CDFvarHyperPut(out -- Completion status code.

13 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFhyperPutrVarData is the
preferred function for it.

178

id as long, ¢ in -- CDF identifier.

varNum as integer, in -- rVariable number.

recStart as integer, ¢ in -- Starting record number.

recCount as integer, in -- Number of records.

recInterval as integer, in -- Interval between records.

indices as integer(), in -- Dimension indices of starting value.

counts as integer(), in -- Number of values along each dimension.
intervals as integer(), in -- Interval between values along each dimension.
buffer as TYPE) ¢ in -- Buffer of values.

TYPE -- VB value/string type (likely an array)

CDFvarHyperPut is used to write one or more values from the data holding buffer to the specified rVariable. It is
important to know the variable majority of the CDF before using this routine because the values in the buffer to be
written must be in the same majority. CDFinquire can be used to determine the default variable majority of a CDF
distribution. The Concepts chapter in the CDF User's Guide describes the variable majorities. Note: you need to
provide dummy arrays, with at least one (1) element, for indices, counts and intervals for scalar variables.

4.3.111.1. Example(s)

The following example writes values to the rVariable LATITUDE of a CDF that is an 2-dimensional array with
dimension sizes (360,181). For LATITUDE the record variance is NOVARY, the dimension variances are
{NOVARY,VARY}, and the data type is CDF_INT2. This example is similar to the CDFvarPut example except that it
uses a single call to CDFvarHyperPut rather than numerous calls to CDFvarPut.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim i as integer ¢ Latitude value.

Dim lats(181) as short ¢ Buffer of latitude values.

rVariable number.
Record number.
Record counts.
Record interval.
Dimension indices.
Dimension counts.
Dimension intervals.

Dim varN as integer

Dim recStart as integer = 0

Dim recCount as integer = 1
Dim reclnterval as integer = 1
Dim indices()as integer = {0,0}
Dim counts() as integer = {1,181}
Dim intervals() as integer = {1,1}

try
varN = CDFvarNum (id, "LATITUDE")
fori= -90 to 90
lats(90+i) = CType(i, short)
next lat
status = CDFvarHyperPut (id, varN, recStart, recCount, reclnterval, indices, counts, intervals, lats)

catch ex as Exception

end try

179

4.3.112 CDFvarInquire

integer CDFvarlnquire(
id as long,

varNum as integer,
varName as string,
dataType as integer ,
numElements as integer,
recVariance as integer,

dimVariances as integer())

out -- Completion status code.

¢ in -- CDF identifier.

in -- rVariable number.

out -- rVariable name.

out -- Data type.

out -- Number of elements (of the data type).
out -- Record variance.

out -- Dimension variances.

CDFvarlnquire is used to inquire about the specified rVariable. This method would normally be used before reading
rVariable values (with CDFvarGet or CDFvarHyperGet) to determine the data type and number of elements (of that

data type).

The arguments to CDFvarlnquire are defined as follows:

id

varNum

varName
dataType

numElements

recVariance

dimVariances

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The number of the rVariable to inquire. This number may be determined with a call to
CDFvarNum (see Section 4.3.113).

The rVariable's name.

The data type of the rVariable. The data types are defined in Section 2.6.

The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The record variance. The record variances are defined in Section 2.10.

The dimension variances. Each element of dimVariances receives the corresponding

dimension variance. The dimension variances are defined in Section 2.10. For 0-
dimensional rVariables this argument is ignored (but a placeholder is necessary).

4.3.112.1. Example(s)

The following example returns about an rVariable named HEAT FLUX in a CDF. Note that the rVariable name
returned by CDFvarlnquire will be the same as that passed in to CDFgetVarNum.

dim id as long
Dim status as integer

¢ CDF identifier.
¢ Returned status code.

180

Dim varName as string rVariable name.

Dim dataType as integer ¢ Data type of the rVariable.

Dim numElems as integer Number of elements (of data type).

Dim recVary as integer Record variance.

Dim dimVarys(CDF_MAX DIMS) as integer ¢ Dimension variances (allocate to allow the
maximum number of dimensions).

try
status = CDFvarlnquire (id, CDFgetVarNum (id,"HEAT FLUX"), varName, dataType, _
numElems, recVary, dimVarys)

catch ex as Exception

end try

4.3.113 CDFvarNum'

integer CDFvarNum(¢ out -- Variable number.
id as long, ¢ in -- CDF identifier.
varName as string) ‘¢ in -- Variable name.

CDFvarNum is used to determine the number associated with a given variable name. If the variable is found,
CDFvarNum returns its variable number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
variable does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0). The
returned variable number should be used in the functions of the same variable type, rVariable or zVariable. If it is an
rVariable, functions dealing with rVariables should be used. Similarly, functions for zVariables should be used for
zVariables.

The arguments to CDFvarNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

varName The name of the variable to search. This may be at most CDF_ VAR NAME LEN256
characters. Variable names are case-sensitive.

4.3.113.1. Example(s)

In the following example CDFvarNum is used as an embedded function call when inquiring about an rVariable.

dim id as long ¢ CDF identifier.
dim status as integer ¢ Returned status code.

14 A legacy CDF function. It used to handle only rVariables. It has been extended to include zVariables. While it is still
available in V3.1, CDFgetVarNum is the preferred function for it.

181

dim varName as string ¢ Variable name.

dim dataType as integer ¢ Data type of the rVariable.

dim numElements integer ¢ Number of elements (of the data type).
dim recVariance as integer ¢ Record variance.

dim dimVariances(CDF_MAX DIMS) as integer ¢ Dimension variances.

try

status = CDFvarlnquire (id, CDFvarNum (id,"LATITUDE"), varName, dataType, _
numElements, recVariance, dimVariances)

catch ex as Exception

end try
In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDFgetVarNum would have returned an error code. Passing that error code to CDFvarlnquire as an rVariable
number would have resulted in CDFvarlnquire also returning an error code. Also note that the name written into

varName is already known (LATITUDE). In some cases the rVariable names will be unknown - CDFvarlnquire would
be used to determine them. CDFvarlnquire is described in Section 4.3.112.

4.3.114 CDFvarPut®

integer CDFvarPut(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
varNum as integer, in -- rVariable number.
recNum as integer, in -- Record number.
indices as integer(), in -- Dimension indices.
value as TYPE) ¢ in -- Value.

 TYPE -- VB value/string type

CDFvarPut writes a single data value to an rVariable. CDFvarPut may be used to write more than one value with a
single call.

The arguments to CDFvarPut are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

varNum The rVariable number to which to write. This number may be determined with a call to
CDFvarNum.

recNum The record number at which to write.

indices The dimension indices within the specified record at which to write. Each element of

indices specifies the corresponding dimension index. For 0-dimensional variables, this
argument is ignored (but must be present).

15 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFputrVarData is the preferred
function for it.

182

value The data value to write.

4.3.114.1. Example(s)

The following example will write two data values (1% and 5" elements) of a 2-dimensional rVariable (2 by 3) named
MY _VAR to record number 0.

dim id as long ¢ CDF identifier.
dim varNum as integer ¢ rVariable number.
dim recNum as integer ¢ The record number.

The dimension indices.
The data values.

Dim indices(2) as integer
Dim valuel as double, value2 as double

try
varNum = CDFgetVarNum (id, “MY_VAR?”)
recNum =0
indices(0) =0
indices(1)=0
valuel = 10.1
status = CDFvarPut (id, varNum, recNum, indices, valuel)
indices(0) = 1
indices(1) =1
value2 =20.2
status = CDFvarPut (id, varNum, recNum, indices, value2)

catch ex as Exception

end try

4.3.115 CDFvarRename!'®

integer CDFvarRename(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

varNum as integer, in -- rVariable number.
varName as string) in -- New name.

CDFvarRename is used to rename an existing rVariable. A variable (rVariable or zVariable) name must be unique.

The arguments to CDFvarRename are defined as follows:

16 A legacy CDF function, handling rVariables only. While it is still available in V3.1, CDFrenamerVar is the preferred
function for it.

183

id

varNum

varName

The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The rVariable number to rename. This number may be determined with a call to
CDFvarNum.

The new rVariable name. The maximum length of the new name is
CDF_VAR NAME LEN256 characters. Variable names are case-sensitive.

4.3.115.1. Example(s)

In the following example

the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if

CDFvarNum returns a value less than zero (0) then that value is not an rVariable number but rather a warning/error

code.

dim id as long
Dim status as integer
Dim varNum as integer

try

¢ CDF identifier.
¢ Returned status code.
¢ rVariable number.

varNum = CDFvarNum (id, "TEMPERATURE")

b

catch ex as Exception

end try

4.4 Attributes/Entries

This section provides functions that are related to CDF attributes or attribute entries. An attribute is identified by its
name or an number in the CDF. Before you can perform any operation on an attribute or attribute entry, the CDF in
which it resides must be opened.

4.4.1 CDFattrC

integer CDFattrCreate(
id as long,

attrName as string,
attrScope as integer,
attrNum as integer)

reate!’

out -- Completion status code.
¢ in -- CDF identifier.

in -- Attribute name.

in -- Scope of attribute.

out -- Attribute number.

17 Same as CDFcreateAttr.

184

CDFattrCreate creates an attribute in the specified CDF. An attribute with the same name must not already exist in the
CDF.

The arguments to CDFattrCreate are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

attrName The name of the attribute to create. This may be at most CDF_ATTR NAME LEN256
characters. Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 2.13.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

4.4.1.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim UNITSattrName as string = "Units" ¢ Name of "Units" attribute.
Dim UNITSattrNum as integer ¢ "Units" attribute number.
Dim TITLEattrNum as integer ¢ "TITLE" attribute number.
Dim TITLEattrScope as integer = GLOBAL SCOPE ¢ "TITLE" attribute scope.
try

status = CDFattrCreate (id, "TITLE", TITLEattrScope, TITLEattrNum)
status = CDFattrCreate (id, UNITSattrName, VARIABLE SCOPE, UNITSattrnum)

catch ex as Exception

end try

4.4.2 CDFattrEntrylnquire

3

integer CDFattrEntryInquire(out -- Completion status code.

185

id as long,

attrNum as integer,
entryNum as integer,
dataType as integer,
numElements as integer)

¢ in-- CDF identifier.
¢ in -- Attribute number.
in -- Entry number.
out -- Data type.
out -- Number of elements (of the data type).

CDFattrEntryInquire is used to inquire about a specific attribute entry. To inquire about the attribute in general, use
CDFattrinquire. CDFattrEntrylnquire would normally be called before calling CDFattrGet in order to determine the
data type and number of elements (of that data type) for an entry. This would be necessary to correctly allocate enough
memory to receive the value read by CDFattrGet.

The arguments to CDFattrEntrylnquire are defined as follows:

id

attrNum

entryNum

dataType

NumElements

4.4.2.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The attribute number for which to inquire an entry. This number may be determined
with a call to CDFattrNum (see Section 4.4.5).

The entry number to inquire. If the attribute is global in scope, this is simply the gEntry
number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by
the rEntry).

The data type of the specified entry. The data types are defined in Section 2.6.
The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (An array of characters).
For all other data types this is the number of elements in an array of that data type.

The following example returns each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between zero (0) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable

numbers.

dim id as long

Dim status as integer
Dim attrN as integer

Dim entryN as integer
Dim attrName as string
Dim attrScope as integer
Dim maxEntry as integer
Dim dataType as integer
Dim numElems as integer

try

¢ CDF identifier.

¢ Returned status code.

¢ attribute number.

¢ Entry number.

¢ attribute name.

¢ attribute scope.

¢ Maximum entry number used.

¢ Data type.

¢ Number of elements (of the data type).

186

attrN = CDFgetAttrNum (id, "TMP")
status = CDFattrlnquire (id, attrN, attrName, attrScope, maxEntry)

for entryN = 0 to maxEntry
status = CDFattrEntrylnquire (id, attrN, entryN, dataType, numElems)

next entryN

}

catch ex as Exception

end try

4.4.3 CDFattrGet'®

integer CDFattrGet(¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

integer attrNum, in -- Attribute number.

integer entryNum, in -- Entry number.

value as TYPE) ¢ out -- Attribute entry value.

TYPE -- VB value/string type or object

CDFattrGet is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDFattrEntryInquire before calling CDFattrGet in order to determine the data type and number of elements (of that
data type) for the entry.

The arguments to CDFattrGet are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrNum The attribute number. This number may be determined with a call to CDFattrNum (Section
4.4.5).

entryNum The entry number. If the attribute is global in scope, this is simply the gEntry number and

has meaning only to the application. If the attribute is variable in scope, this is the number
of the associated rVariable (the rVariable being described in some way by the rEntry).

value The value read. This buffer must be large enough to hold the value. The method
CDFattrEntrylnquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

18 A legacy CDF function. While it is still available in V3.1, CDFgetAttrgEntry or CDFgetAttrrEntry is the preferred
function for it.

187

4.4.3.1. Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR).

dim id as long ¢ CDF identifier.

dim status as integer Returned status code.

Dim attrN as integer Attribute number.

Dim entryN as integer Entry number.

Dim dataType as integer ¢ Data type.

Dim numElems as integer Number of elements (of data type).

3

3

try
attrN = CDFattrNum (id, "UNITS")
entryN = CDFvarNum (id, "PRES_LVL") ¢ The rEntry number is the rVariable number.

status = CDFattrEntrylnquire (id, attrN, entryN, dataType, numElems)

if dataType = CDF_CHAR then
dim buffer as string
status = CDFattrGet (id, attrN, entryN, buffer)
end if
catch ex as Exception

end try

4.4.4 CDFattrInquire!

integer CDFattrInquire(out -- Completion status code.

id as long, ¢ in -- CDF identifier.

attrNum as integer, in -- Attribute number.

attrName as string, out -- Attribute name.

attrScope as integer, out -- Attribute scope.

maxEntry as integer) out -- Maximum gEntry/rEntry number.

CDFattrlnquire is used to inquire about the specified attribute. To inquire about a specific attribute entry, use
CDFattrEntryInquire.
The arguments to CDFattrInquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

19 A legacy function. While it is still available in V3.1, CDFinquireAttr is the preferred function for it.

188

attrNum The number of the attribute to inquire. This number may be determined with a call to
CDFattrNum (see Section 4.4.5).

attrName The attribute's name. This string length is limited to CDF_ ATTR NAME LEN256.
attrScope The scope of the attribute. Attribute scopes are defined in Section 2.13.
maxEntry For gAttributes this is the maximum gEntry number used. For vAttributes this is the

maximum rEntry number used. In either case this may not correspond with the number of
entries (if some entry numbers were not used). If no entries exist for the attribute, then a
value of -1 will be passed back.

4.4.4.1. Example(s)

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first

determined using the method CDFinquire. Note that attribute numbers start at zero (0) and are consecutive.

dim id as long

Dim status as integer
Dim numDims as integer
Dim dimSizes() as integer

Dim encoding as integer
Dim majority as integer
Dim maxRec as integer
Dim numVars as integer
Dim numAttrs as integer
Dim attrN as integer
Dim attrName as string
Dim attrScope as integer
Dim maxEntry as integer

try

CDF identifier.

Returned status code.

Number of dimensions.

Dimension sizes (allocate to allow the
maximum number of dimensions).

Data encoding.

Variable majority.

Maximum record number in CDF.

Number of variables in CDF.

Number of attributes in CDF.

attribute number.

attribute name.

attribute scope.

Maximum entry number.

status = CDFinquire (id, numDims, dimSizes, encoding, majority, maxRec, numVars,

for attrN = 0 to (numAttrs-1)

status = CDFattrInquire (id, attrN, attrName, attrScope, maxEntry)

next attrN
catch ex as Exception

end try

4.4.5 CDFattrNum?'

integer CDFattrNum(¢ out -- attribute number.
id as long, ‘in-- CDF id
attrName as string) ¢ in -- Attribute name

CDFattrNum is used to determine the attribute number associated with a given attribute name. If the attribute is found,
CDFattrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the attribute
name does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0).

The arguments to CDFattrNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrName The name of the attribute for which to search. This may be at most
CDF_ATTR NAME LEN256 characters. Attribute names are case-sensitive.

CDFattrNum may be used as an embedded function call when an attribute number is needed.

4.4.5.1. Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFattrNum being used as
an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDFattrNum would
have returned an error code. Passing that error code to CDFattrRename as an attribute number would have resulted in
CDFattrRename also returning an error code.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFattrRename (id, CDFattrNum (id,"pressure"), "PRESSURE")

catch ex as Exception

end try

4.4.6 CDFattrPut

integer CDFattrPut(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

20 A legacy CDF function. While it is still available in V3.1, CDFgetAttrNum is the preferred function for it.

190

integer attrNum,
integer entryNum,
integer dataType,
integer numElements,
value as TYPE)

in -- Attribute number.

in -- Entry number.

in -- Data type of this entry.

in -- Number of elements (of the data type).
in -- Attribute entry value.

¢ TYPE -- VB value/string type

CDFattrPut is used to write an entry to a global or rVariable attribute in a CDF. The entry may or may not already
exist. If it does exist, it is overwritten. The data type and number of elements (of that data type) may be changed when

overwriting an existing entry.

The arguments to CDFattrPut are defined as follows:

id

attrNum

entryNum

dataType

numElements

value

4.4.6.1. Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopen.

The attribute number. This number may be determined with a call to CDFgetAttrNum.

The entry number. If the attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the

rEntry).

The data type of the specified entry. Specify one of the data types defined in Section
2.6.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

The following example writes two attribute entries. The first is to gEntry number zero (0) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

dim id as long
Dim status as integer

¢ CDF identifier.
Returned status code.

Dim TITLE_LEN as integer = 10 ¢ Entry string length.

Dim entryNum as integer
Dim numElements as integer

Entry number.
Number of elements (of data type).

Dim title as string = "CDF title." ¢ Value of TITLE attribute, entry number 0.

Dim TMPvalids() as short = {15,30}

entryNum = 0

N

Value(s) of VALIDs attribute,
¢ rEntry for rVariable TMP.

191

try
status = CDFattrPut (id, CDFgetAttrNum (id,"TITLE"), entryNum, CDF_CHAR, TITLE LEN, title)

numElements = 2
status = CDFattrPut (id, CDFgetAttrNum (id,"VALIDs"), CDFgetVarNum (id,"TMP"), _
CDF_INT2, numElements, TMPvalids)

catch ex as Exception

end try

4.4.7 CDFattrRename?!

integer CDFattrRename(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

attrNum as integer, in -- Attribute number.
attrName as string) in -- New attribute name.

CDFattrRename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.
The arguments to CDFattrRename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopen.

attrNum The number of the attribute to rename. This number may be determined with a call to
CDFattrNum (see Section 4.4.5).

attrName The new attribute name. This may be at most CDF_ ATTR NAME LEN256 characters.
Attribute names are case-sensitive.

4.4.7.1. Example(s)

In the following example the attribute named LAT is renamed to LATITUDE.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFattrRename (id, CDFgetAttrNum (id,"LAT"), "LATITUDE")

21 A legacy CDF function. While it is still available in V3.1, CDFrenameAdttr is the preferred function for it.

192

catch ex as Exception

end try

4.4.8 CDFconfirmAttrExistence

3

integer CDFconfirmAttrExistence(out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrName as string) ¢ in -- Attribute name.

CDFconfirmAttrExistence confirms whether an attribute exists for the given attribute name in a CDF. If the attribute
doesn’t exist, the informational status code, NO_SUCH_ATTR, is returned and no exception is thrown.

The arguments to CDFconfirmAttrExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrName The attribute name to check.

4.4.8.1. Example(s)

The following example checks whether an attribute by the name of “ATTR_NAME1” is in a CDF.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFconfirmAttrExistence (id, “ATTR NAME1")
if status = NO_SUCH_ATTR then

end if
catch ex as Exception

end try

193

4.4.9 CDFconfirmgEntryExistence

integer CDFconfirmgEntryExistence(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer) in -- gEntry number.

CDFconfirmgEntryExistence confirms the existence of the specified entry (gEentry), in a global attribute from a CDF.
If the gEntry does not exist, the informational status code NO_SUCH_ENTRY will be returned and no exception is
thrown.

The arguments to CDFconfirmgEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The (global) attribute number.

entryNum The gEntry number.

4.4.9.1. Example(s)

The following example checks the existence of a gEntry numbered 1 for attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
dim attrNum as integer Attribute number.
Dim entryNum as integer gEntry number.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 1

status = CDFconfirmgEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

4.4.10 CDFconfirmrEntryExistence

integer CDFconfirmrEntryExistence(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer) in -- rEntry number.

194

CDFconfirmrEntryExistence confirms the existence of the specified entry (rEntry), corresponding to an rVariable, in a
variable attribute from a CDF. If the rEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned and no exception is thrown.

The arguments to CDFconfirmrEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The variable attribute number.

entryNum The rEntry number.

4.4.10.1. Example(s)

The following example checks the existence of an rEntry, corresponding to rVariable “MY_VAR”, for attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

dim status as integer ¢ Returned status code.
dim attrNum as integer Attribute number.
dim entryNum as integer ¢ rEntry number.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR?”)
entryNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFconfirmrEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

catch ex as Exception

end try

4.4.11 CDFconfirmzEntryExistence

integer CDFconfirmzEntryExistence(out -- Completion status code.
id as long, ¢ in -- CDF identifier.

attrNum as integer, in -- Attribute number.
entryNum as integer) in -- zEntry number.

195

CDFconfirmzEntryExistence confirms the existence of the specified entry (zEntry), corresponding to a zVariable, in a
variable attribute from a CDF. If the zEntry does not exist, the informational status code NO_SUCH_ENTRY will be
returned and no exception is thrown.

The arguments to CDFconfirmzEntryExistence are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The (variable) attribute number.

entryNum The zEntry number.

4.4.11.1. Example(s)

The following example checks the existence of the zEntry corresponding to zVariable “MY_VAR” for the variable
attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim varNum as integer Attribute number.
dim entryNum as integer zEntry number.

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR”)

status = CDFconfirmzEntryExistence (id, attrNum, entryNum)
if status = NO_SUCH_ENTRY then UserStatusHandler (status)

catch ex as Exception

end try

4.4.12 CDFcreateAttr

integer CDFcreateAttr(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrName as string, in -- Attribute name.
attrScope as integer, in -- Scope of attribute.
attrNum as integer) out -- Attribute number.

CDFcreateAttr creates an attribute with the specified scope in a CDF. It is identical to the method CDFattrCreate. An
attribute with the same name must not already exist in the CDF.

196

The arguments to CDFcreateAttr are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrName The name of the attribute to create. This may be at most CDF_ATTR NAME LEN256
characters. Attribute names are case-sensitive.

attrScope The scope of the new attribute. Specify one of the scopes described in Section 2.13.

attrNum The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDFgetAttrNum function.

4.4.12.1. Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

dim id as longid ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

Dim UNITSattrName as string = "Units" ¢ Name of "Units" attribute.
Dim UNITSattrNum as integer ¢ "Units" attribute number.
Dim TITLEattrNum as integer ¢ "TITLE" attribute number.
Dim TITLEattrScope as integer = GLOBAL SCOPE ¢ "TITLE" attribute scope.
try

status = CDFcreateAttr (id, "TITLE", TITLEattrScope, TITLEattrNum)
status = CDFcreateAttr (id, UNITSattrName, VARIABLE SCOPE, UNITSattrnum)

catch ex as Exception

end try

4.4.13 CDFdeleteAttr

integer CDFdeleteAttr(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer) ¢ in -- Attribute identifier.

CDFdeleteAttr deletes the specified attribute from a CDF.

The arguments to CDFdeleteAttr are defined as follows:

197

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number to be deleted.

4.4.13.1. Example(s)

The following example deletes an existing attribute named MY ATTR from a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.
try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFdeleteAttr (id, attrNum)

catch ex as Exception

end try

4.4.14 CDFdeleteAttrgEntry

integer CDFdelete AttrgEntry(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

entryNum as integer) in -- gEntry identifier.

CDFdeleteAttrgEntry deletes the specified entry (gEntry) in a global attribute from a CDF.
The arguments to CDFdeleteAttrgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number from which to delete an attribute entry.

entryNum The gEntry number to delete.

198

4.4.14.1. Example(s)

The following example deletes the entry number 5 from an existing global attribute MY ATTR in a CDF.

dim id as long

Dim status as integer
dim varNum as integer
dim entryNum as integer

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)

entryNum = 5
status = CDFdeleteAttrgEntry (id, attrNum, entryNum)

catch ex as Exception

end try

4.4.15 CDFdeleteAttrrEntry

integer CDFdeleteAttrrEntry(
id as long,

attrNum as integer,
entryNum as integer)

¢ CDF identifier.
Returned status code.
Attribute number.
gEntry number.

3

out -- Completion status code.
in -- CDF identifier.

in -- Attribute identifier.

in -- rEntry identifier.

CDFdeleteAttrrEntry deletes the specified entry (rEntry), corresponding to an rVariable, in an (variable) attribute from

a CDF.

The arguments to CDFdeleteAttrrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or

CDFcreateCDF) or CDFopenCDF.
attrNum The (variable) attribute number.

entryNum The rEntry number.

4.4.15.1. Example(s)

The following example deletes the entry corresponding to rVariable “MY_VAR1” from the variable attribute

“MY_ATTR” in a CDF.

199

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim varNum as integer ¢ Attribute number.
dim entryNum as integer ¢ rEntry number.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR1”)
status = CDFdeleteAttrrEntry (id, attrNum, entryNum)

catch ex as Exception

end try

4.4.16 CDFdeleteAttrzEntry

integer CDFdeleteAttrzEntry(¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer, ‘¢ in -- Attribute identifier.
entryNum as integer) ¢ in -- zEntry identifier.

CDFdeleteAttrzEntry deletes the specified entry (zEntry), corresponding to a zVariable, in an (variable) attribute from a
CDF.

The arguments to CDFdeleteAttrzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

entryNum The zEntry number to be deleted that is the zVariable number.

4.4.16.1. Example(s)

The following example deletes the variable attribute entry named MY ATTR that is attached to the zVariable
MY VARIL.

dim id as long ¢ CDF identifier.

200

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.
dim entryNum as integer ¢ zEntry number.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR1”)

status = CDFdeleteAttrzEntry (id, attrNum, entryNum)

catch ex as Exception

end try

4.4.17 CDFgetAttrgEntry

integer CDFgetAttrgEntry (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

entryNum as integer, in -- gEntry number.
value as TYPE) ¢ out -- gEntry data.
TYPE -- VB value/string type or object

This method is identical to the method CDFattrGet. CDFgetAttrgEntry is used to read a global attribute entry from a
CDF. In most cases it will be necessary to call CDFinquireAttrgEntry before calling CDFgetAttrgEntry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum The global attribute entry number.

value The value read.

4.4.17.1. Example(s)

The following example displays the value of the global attribute called HISTORY.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.

201

3

Dim attrN as integer Attribute number.

Dim entryN as integer ¢ Entry number.

Dim dataType as integer ¢ Data type.

Dim numElems as integer ¢ Number of elements (of data type).
Dim buffer as Object ¢ Buffer to receive value.

try

attrN = CDFattrNum (id, "HISTORY")

entryN = 0

status = CDFinquireAttrgEntry (id, attrN, entryN, dataType, numElems)
status = CDFgetAttrgEntry (id, attrN, entryN, buffer)

if dataType = CDF_CHAR then

‘ buffer is a string

end if

catch ex as Exception

end try

4.4.18 CDFgetAttrgEntryDataType

integer CDFgetAttrgEntryDataType (out -- Completion status code.
id as long, ¢ in -- CDF identifier.

attrNum as integer, ‘¢ in -- Attribute identifier.
entryNum as integer, in -- gEntry number.
dataType as integer) out -- gEntry data type.

CDFgetAttrgEntryDataType returns the data type of the specified global attribute and gEntry number in a CDF. The
data types are described in Section 2.6.

The arguments to CDFgetAttrgEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The global attribute number.
entryNum The gEntry number.

dataType The data type of the gEntry.

4.4.18.1. Example(s)

The following example gets the data type for the gEntry numbered 2 from the global attribute “MY_ATTR” in a CDF.

202

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
Dim attrNum as integer ¢ Attribute number.
dim entryNum as integer ¢ gEntry number.

dim dataType as integer ¢ gEntry data type.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = 2
status = CDFgetAttrgEntryDataType (id, attrNum, entryNum, dataType)

catch ex as Exception

end try

4.4.19 CDFgetAttrgEntryNumElements

integer CDFgetAttrgEntryNumElements (out -- Completion status code.

id as long, ¢ in -- CDF identifier.

attrNum as integer, ¢ in -- Attribute identifier.

entryNum as integer, in -- gEntry number.

numElems as integer) out -- gEntry’s number of elements.

CDFgetAttrgEntryNumElements returns the number of elements of the specified global attribute and gentry number in
a CDF.
The arguments to CDFgetAttrgEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the global attribute.
entryNum The gEntry number.

numElems The number of elements of the gEntry.

4.4.19.1. Example(s)

The following example gets the number of elements from the gEntry numbered 2 from the global attribute
“MY_ATTR” in a CDF.

203

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.

dim attrNum as integer ¢ Attribute number.

dim entryNum as integer gEntry number.

dim numElements as integer gEntry’s number of elements.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)

entryNum =2
status = CDFgetAttrgEntryNumElements (id, attrNum, entryNum, numElements)

catch ex as Exception

end try

4.4.20 CDFgetAttrMaxgEntry

integer CDFgetAttrMaxgEntry (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

maxEntry as integer) out -- The last gEntry number.

CDFgetAttrMaxgEntry returns the last entry number of the specified global attribute in a CDF.
The arguments to CDFgetAttrMaxgEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the global attribute.

maxEntry The last gEntry number.

4.4.20.1. Example(s)

The following example gets the last entry number from the global attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.
Dim attrNum as integer ¢ Attribute number.

204

dim maxEntry as integer ¢ The last gEntry number.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrMaxgEntry (id, attrNum, maxEntry)

catch ex as Exception

end try

4.4.21 CDFgetAttrMaxrEntry

integer CDFgetAttrMaxrEntry (out -- Completion status code.

id as long, ¢ in -- CDF identifier.

attrNum as integer, ¢ in -- Attribute identifier.

maxEntry as integer) out -- The maximum rEntry number.

CDFgetAttrMaxrEntry returns the last rEntry number (rVariable number) to which the given variable attribute is
attached.
The arguments to CDFgetAttrMaxrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

maxEntry The last rEntry number (rVariable number) to which attrNum is attached..

4.4.21.1. Example(s)

The following example gets the last entry, corresponding to the last rVariable number, from the variable attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
dim attrNum as integer Attribute number.

dim maxEntry as integer The last rEntry number.

3

try

205

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrMaxrEntry (id, attrNum, maxEntry)

catch ex as Exception

end try

4.4.22 CDFgetAttrMaxzEntry

integer CDFgetAttrMaxzEntry (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer, ‘¢ in -- Attribute identifier.

maxEntry as integer) out -- The maximum zEntry number.

CDFgetAttrMaxzEntry returns the last entry number, corresponding to the last zVariable number, to which the given
variable attribute is attached.
The arguments to CDFgetAttrMaxzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.

maxEntry The last zEntry number (zVariable number) to which attrNum is attached..

4.4.22.1. Example(s)

The following example gets the last entry, corresponding to the last zVariable number, attached to the variable attribute
MY ATTR in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer Returned status code.
dim attrNum as integer Attribute number.

dim maxEntry as integer The last zEntry number

3

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrMaxzEntry (id, attrNum, maxEntry)

catch ex as Exception

206

end try

4.4.23 CDFgetAttrName

integer CDFgetAttrName (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

attrName as string) out -- The attribute name.

CDFgetAttrName gets the name of the specified attribute (by its number) in a CDF.
The arguments to CDFgetAttrName are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the attribute.

attrName The name of the attribute.

4.4.23.1. Example(s)

The following example retrieves the name of the attribute number 2, if it exists, in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer Attribute number.
Dim attrName as string The attribute name.

3

attrNum = 2
try

status = CDFgetAttrName (id, attrNum, attrName)

catch ex as Exception

end try

207

4.4.24 CDFgetAttrNum

integer CDFgetAttrNum (¢ out -- Attribute number.
id as long, ¢ in -- CDF identifier.
attrName as string) ¢ in -- The attribute name.

CDFgetAttrNum is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDFgetAttrNum returns its number - which will be equal to or greater than zero (0). If an error occurs (e.g., the
attribute name does not exist in the CDF), an error code (of type Int) is returned. Error codes are less than zero (0).

The arguments to CDFgetAttrNum are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrName The name of the attribute for which to search. This may be at most
CDF_ATTR NAME LEN256 characters. Attribute names are case-sensitive.

CDFgetAttrNum may be used as an embedded function call when an attribute number is needed.

4.4.24.1. Example(s)

In the following example the attribute named pressure will be renamed to PRESSURE with CDFgetAttrNum being
used as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to
CDFgetAttrNum would have returned an error code. Passing that error code to CDFattrRename as an attribute number
would have resulted in CDFattrRename also returning an error code.

dim id as long ¢ CDF identifier.
Dim status as integer ¢ Returned status code.
try

status = CDFrenameAttr (id, CDFgetAttrNum (id,"pressure"), "PRESSURE")

catch ex as Exception

end try

4.4.25 CDFgetAttrrEntry

integer CDFgetAttrrEntry (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

entryNum as integer, in -- Entry number.

208

value as TYPE) ¢ out -- Entry data.
¢ TYPE -- VB value/string type or object

This method is identical to the method CDFattrGet. CDFgetAttrrEntry is used to read an rVariable attribute entry from
a CDF. In most cases it will be necessary to call CDFinquireAttrrEntry before calling CDFgetAttrrEntry in order to
determine the data type and number of elements (of that data type) for the entry.

The arguments to CDFgetAttrrEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate
(or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number. This number may be determined with a call to CDFgetAttrNum.

entryNum The rVariable attribute entry number that is the rVariable number from which the attribute is
read.

value The entry value read.

4.4.25.1. Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR).

dim id as longid ¢ CDF identifier.

Dim status as integer Returned status code.

Dim attrN as integer Attribute number.

Dim entryN as integer Entry number.

Dim dataType as integer ¢ Data type.

Dim numElems as integer Number of elements (of data type).

3

3

try
attrN = CDFattrNum (id, "UNITS")
entryN = CDFvarNum (id, "PRES_LVL") ¢ The rEntry number is the rVariable number.
status = CDFinquireAttrrEntry (id, attrN, entryN, out dataType, out numElems)
if dataType = CDF_CHAR then

Dim buffer as string
status = CDFgetAttrrEntry (id, attrN, entryN, buffer)

end if .
catch ex as Exception

end try

209

4.4.26 CDFgetAttrrEntryDataType

integer CDFgetAttrrEntryDataType (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

entryNum as integer,
dataType as integer)

in -- rEntry number.
out -- rEntry data type.

CDFgetAttrrEntryDataType returns the data type of the rEntry from an (variable) attribute in a CDF. The data types are
described in Section 2.6.
The arguments to CDFgetAttrrEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The rEntry number.

dataType The data type of the rEntry.

4.4.26.1. Example(s)

The following example gets the data type for the entry of rVariable “MY_VARI1” in the (variable) attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer ¢ Attribute number.

dim entryNum as integer ¢ rEntry number.
dim dataType as integer ¢ rEntry data type.
try

attrNum = CDFgetAttrNum (id, “MY_ATTR”)
entryNum = CDFgetVarNum (id, “MY_VAR1”)
status = CDFgetAttrrEntryDataType (id, attrNum, entryNum, dataType)

catch ex as Exception

end try

210

4.4.27 CDFgetAttrrEntryNumElements

integer CDFgetAttrrEntryNumElements (out -- Completion status code.

id as long, ¢ in -- CDF identifier.

attrNum as integer, ¢ in -- Attribute identifier.

startRec as integer, in -- rEntry number.

numElems as integer) out -- rEntry’s number of elements.

CDFgetAttrrEntryNumElements returns the number of elements of the rEntry from an (variable) attribute in a CDF.

The arguments to CDFgetAttrrEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The rEntry number.

numElems The number of elements of the rEntry.

4.4.27.1. Example(s)

The following example gets the number of elements for the entry of rVariable “MY_VARI1” in the (variable) attribute
“MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

dim attrNum as integer Attribute number.

dim entryNum as integer ¢ rEntry number.

dim numElements as integer rEntry’s number of elements.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)

entryNum = CDFgetVarNum (id, “MY_VAR1”)
status = CDFgetAttrrEntryNumElements (id, attrNum, entryNum, numElements)

catch ex as Exception

end try

211

4.4.28 CDFgetAttrScope

integer CDFgetAttrScope (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer, in -- Attribute number.
attrScope as integer) out -- Attribute scope.

CDFgetAttrScope returns the attribute scope (GLOBAL SCOPE or VARIABLE SCOPE) of the specified attribute in
a CDF. Refer to Section 2.13 for the description of the attribute scopes.

The arguments to CDFgetAttrScope are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

attrScope The scope of the attribute.

4.4.28.1. Example(s)

The following example gets the scope of the attribute “MY_ATTR” in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer Attribute number.
dim attrScope as integer Attribute scope.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetAttrScope (id, attrNum, attrScope)

catch ex as Exception

end try

4.4.29 CDFgetAttrzEntry

integer CDFgetAttrzEntry(¢ out -- Completion status code.

212

id as long, ¢ in -- CDF identifier.

attrNum as integer,
entryNum as integer,

in -- Variable attribute number.
in -- Entry number.

value as TYPE) ¢ out -- Entry value.

TYPE -- VB value/string type or object

CDFgetAttrzEntry is used to read zVariable’s attribute entry.. In most cases it will be necessary to call
CDFinquireAttrzEntry before calling this method in order to determine the data type and number of elements (of that

data type) for the entry.

The arguments to CDFgetAttrzEntry are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate

(or CDFcreateCDF) or CDFopenCDF.

attrNum The wvariable attribute number. This number may be determined with a call to
CDFgetAttrNum.
entryNum The variable attribute entry number that is the zVariable number from which the attribute

entry is read

value The entry value read.

4.4.29.1. Example(s)

The following example displays the value of the UNITS attribute for the PRES LVL zVariable (but only if the data

type is CDF_CHAR).

3

dim id as long

Dim status as integer
Dim attrN as integer

Dim entryN as integer
Dim dataType as integer
Dim numElems as integer

3
3
3

try

attrN = CDFgetAttrNum (id, "UNITS")

CDF identifier.

Returned status code.

Attribute number.

Entry number.

Data type.

Number of elements (of data type).

entryN = CDFgetVarNum (id, "PRES_LVL") ¢ The zEntry number is the zVariable number.

status = CDFinquireAttrzEntry (id, attrN, entryN, dataType, numElems)
if dataType = CDF_CHAR then

dim buffer as string

status = CDFgetAttrzEntry (id, attrN, entryN, buffer)
end if

catch ex as Exception

end try

213

4.4.30 CDFgetAttrzEntryDataType

integer CDFgetAttrzEntryDataType (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

in -- zEntry number.
out -- zEntry data type.

entryNum as integer,
dataType as integer)

CDFgetAttrzEntryDataType returns the data type of the zEntry for the specified variable attribute in a CDF. The data
types are described in Section 2.6.
The arguments to CDFgetAttrzEntryDataType are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The zEntry number that is the zVariable number.

dataType The data type of the zEntry.

4.4.30.1. Example(s)

The following example gets the data type of the attribute named MY_ATTR for the zVariable MY _VARI in a CDF.

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.
dim attrNum as integer Attribute number.
dim entryNum as integer zEntry number.

dim dataType as integer zEntry data type.

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)

entryNum = CDFgetVarNum (id, “MY_VAR1”)
status = CDFgetAttrzEntryDataType (id, attrNum, entryNum, dataType)

catch ex as Exception

end try

214

4.4.31 CDFgetAttrzEntryNumElements

integer CDFgetAttrzEntryNumElements (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer, ¢ in -- Attribute identifier.

entryNum as integer ,
numElems as integer)

in -- zEntry number.
out -- zEntry’s number of elements.

CDFgetAttrzEntryNumElements returns the number of elements of the zEntry for the specified variable attribute in a
CDF.
The arguments to CDFgetAttrzEntryNumElements are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate (or
CDFcreateCDF) or CDFopenCDF.

attrNum The identifier of the variable attribute.
entryNum The zEntry number that is the zVariable number.

numElems The number of elements of the zEntry.

4.4.31.1. Example(s)

The following example returns the number of elements for attribute named MY_ATTR for the zVariable MY _VARI in
a CDF

dim id as long ¢ CDF identifier.

Dim status as integer ¢ Returned status code.

dim attrNum as integer Attribute number.

dim entryNum as integer zEntry number.

dim numElements as integer zEntry’s number of elements.

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)

entryNum = CDFgetVarNum (id, “MY_VAR1”)
status = CDFgetAttrzEntryNumElements (id, attrNum, entryNum, out numElements)

catch ex as Exception

end try

215

4.4.32 CDFgetNumAttrgEntries

integer CDFgetNumAttrgEntries (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

attrNum as integer, in -- Attribute number.

entries as integer) out -- Total gEntries.

CDFgetNumAttrgEntries returns the total number of entries (gEntries) written for the specified global attribute in a
CDF.
The arguments to CDFgetNumAttrgEntries are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Number of gEntries for attrNum.

4.4.32.1. Example(s)

The following example retrieves the total number of gEntries for the global attribute MY ATTR in a CDF.

3

dim status as integer Returned status code.
dim id as long ¢ CDF identifier.

Dim attrNum as integer Attribute number.
Dim numEntries as integer Number of entries.
Dim i as integer

3

try
attrNum = CDFgetAttrNum (id, “MUY_ATTR”)
status = CDFgetNumAttrgEntries (id, attrNum, numEntries)
for i=0 to (numEntries-1)
¢ process an entry
next i

catch ex as Exception

end try

216

4.4.33 CDFgetNumAttributes

integer CDFgetNumAttributes (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

numAttrs as integer) ¢ out -- Total number of attributes.
CDFgetNumAttributes returns the total number of global and variable attributes in a CDF.

The arguments to CDFgetNumAttributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

numAttrs The total number of global and variable attributes.

4.4.33.1. Example(s)

The following example returns the total number of global and variable attributes in a CDF.

dim status as integer ¢ Returned status code.
dim id as long ¢ CDF identifier.

dim numAttrs as integer ¢ Number of attributes.
try

status = CDFgetNumAttributes (id, out numAttrs)

catch ex as Exception

end try

4.4.34 CDFgetNumAttrrEntries

integer CDFgetNumAttrrEntries (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.
attrNum as integer , ‘ in -- Attribute number.

217

3

entries as integer) out -- Total rEntries.

CDFgetNumAttrrEntries returns the total number of entries (rEntries) written for the rVariables in the specified
(variable) attribute of a CDF.
The arguments to CDFgetNumAttrrEntries are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Total rEntries.

4.4.34.1. Example(s)

The following example returns the total number of rEntries from the variable attribute “MY_ATTR” in a CDF.

dim status as integer ¢ Returned status code.

dim id as long

dim attrNum as integer ¢ Attribute number.
dim entries as integer ¢ Number of entries.

try

attrNum = CDFgetAttrNum (id, “MY_ATTR?”)
status = CDFgetNumAttrrEntries (id, attrNum, entries)

catch ex as Exception

end try

4.4.35 CDFgetNumAttrzEntries

integer CDFgetNumAttrzEntries (¢ out -- Completion status code.
id as long, ¢ in -- CDF identifier.

attrNum as integer, in -- Attribute number.

entries as integer) out -- Total zEntries.

CDFgetNumAttrzEntries returns the total number of entries (zEntries) written for the zVariables in the specified
variable attribute in a CDF.

218

The arguments to CDFgetNumAttrzEntries are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF) or CDFopenCDF.

attrNum The attribute number.

entries Total zEntries.

4.4.35.1. Example(s)

The following example returns the total number of zEntries for the variable attribute MY ATTR in a CDF.

3

dim status as integer Returned status code.
dim id as long ¢ CDF identifier.

dim attrNum as integer Attribute number.
dim entries as integer Number of entries.

3

try
attrNum = CDFgetAttrNum (id, “MY_ATTR”)
status = CDFgetNumAttrzEntries (id, attrNum, entries)

catch ex as Exception

end try

4.4.36 CDFgetNumgAttributes

integer CDFgetNumgAttributes (¢ out -- Completion status code.

id as long, ¢ in -- CDF identifier.

numAttrs as integer) ¢ out -- Total number of global attributes.
CDFgetNumgAttributes returns the total number of global attributes in a CDF.

The arguments to CDFgetNumgAttributes are defined as follows:

id The identifier of the current CDF. This identifier must have been initialized by a call to
CDFcreate (or CDFcreateCDF)